Category Archives: Computer Science

FluxRank: 如何快速地进行机器故障定位

在运维领域,服务侧的异常会由多方面的原因造成,有的时候是因为网络的抖动,有的时候是因为机器的故障,有的时候甚至是因为人为的变更。本篇博客会介绍一种机器异常定位的方法,论文是来自于清华 Netman 实验室的《FluxRank:A Widely-Deployable Framework to Automatically Localizting Root Cause Machines for Software Service Failure Mitigation》。本篇论文主要介绍了如何从服务的故障定位到局部异常的机器,也就是说在发现服务故障的同时,进一步推断出是由哪些机器出现问题而导致的。

通常来说,在服务异常(例如服务的耗时长,失败数上涨)的时候,需要运维人员通过历史上的经验迅速定位到是哪个业务,哪个模块,甚至哪台服务器出现了故障。而人工定位的速度总是会出现瓶颈的,无论对模块的判断,还是机器的判断,都依赖于人工所积累的经验。而每个人的经验却各不相同,并且经验的传承也需要一定的时间成本。那么如何基于人工运维的经验来构建模型,进一步地提升异常定位的速度就是智能运维的关键之处之一。

FluxRank_fig_1
从告警到故障恢复

对于一条业务指标(时间序列)而言,大多数情况下是处于正常的状态(normal)。但是如果出现了错误的变更,发布了错误的程序,或者服务器突然出现了故障,都会导致业务指标出现变化,就从正常(normal)变成异常(abnormal)。这个时候就会出现一个故障的开始时间,也就是 failure start time T_{f},这个时间戳是运维领域非常重要的时间戳,它由异常检测(anomaly detection)产生,无论在告警收敛(alarm convergence)还是根因分析(root cause analysis)都非常依赖这个时间戳。而另外一个时间戳虽然没有故障开始时间那么重要,但是也有着其实用价值,那就是缓和开始时间(mitigation start time),它表示故障虽然还没有恢复,但是出于稍微平稳的走势,并没有持续恶化。在出现了故障之后,通常都会发送相应的告警给运维人员,那么在发送告警的时候,如果将异常定位的结果随之带出,则会大大减少运维人员排障的时间。在故障缓和的时间内,运维人员通常需要进行必要的操作来排查故障,例如切换流量(switch Traffic),回滚版本(Rollback Version),重启实例(Restart Instances),下线机器等操作。除此之外,为了定位问题(Root Cause Analysis),运维人员需要分析源码(Code Analysis),查看日志(Log Analysis)等一系列操作。如果能够将这一系列操作融入相应的机器学习模块中,将会节省运维人员大量的排障时间。

贝叶斯网络

通常来说,故障定位也称为根因分析或者根源分析(Root Cause Analysis),都是为了排查产生这次故障的原因。在机器学习领域,为了进行因果分析(Causal Analysis),则需要使用相应的模型来进行建模。其中较为经典的统计分析方法则是贝叶斯分析法,其中的贝叶斯网络(Bayesian Network)则是经典模型之一。下面来看一个简单的例子。

假设降雨(Rain)的概率是 0.2,不降雨的概率是 0.8;而洒水器(Sprinkler)是否开启会受到降雨的影响,其条件概率与下图所示。而降雨或者洒水器都会导致草湿润(Grass Wet),其概率分布如下图所示。那么可以问如下问题:

  1. 如果草已经湿润,求降雨的概率是多少?
  2. 如果草已经湿润,求没有降雨且洒水器开启的概率是多少?
BayesianNetwork_2
贝叶斯网络的经典案例

而这一类的问题可以通过贝叶斯公式来进行解答。从表格来看:

从 Rain 的表格可得:P(R=T)=0.2, P(R=F)=0.8

从 Rain 和 Sprinkler 的表格可得:P(S=T|R=F)=0.4, P(S=F|R=F)=0.6P(S=T|R=T)=0.01, P(S=F|R=T)=0.99

从 Grass Wet 和 Sprinkler,Rain 的表格可得:P(W=T|S=F, R=F)=0.0, P(W=F|S=F,R=F)=1.0P(W=T|S=F,R=T)=0.8, P(W=F|S=F,R=T)=0.2P(W=T|S=T,R=F)=0.9, P(W=F|S=T,R=F)=0.1P(W=T|S=T,R=T)=0.99, P(W=F|S=T,R=T)=0.01.

针对问题 1,需要计算条件概率 P(R=T|W=T)。从 Bayes 公式可以得到:P(R=T|W=T) = P(R=T,W=T)/P(W=T)。分别计算分子分母即可:

P(R=T,W=T)=P(R=T,S=T,W=T)+P(R=T,S=F,W=T)

= P(W=T|R=T,S=T)P(S=T|R=T)P(R=T) + P(W=T|R=T,S=F)P(S=F|R=T)P(R=T)

= 0.99*0.01*0.2+0.8*0.99*0.2=0.16038

P(W=T)=P(W=T,S=T,R=T)+P(W=T,S=F,R=T)+P(W=T,S=T,R=F)+P(W=T,S=F,R=F)

=P(W=T|S=T,R=T)P(S=T|R=T)P(R=T) + P(W=T|S=F,R=T)P(S=F|R=T)P(R=T) + P(W=T|S=T,R=F)P(S=T|R=F)P(R=F)+P(W=T|S=F,R=F)P(S=F|R=F)P(R=F)

= 0.99*0.01*0.2+0.8*0.99*0.2+0.9*0.4*0.8+0.0*0.6*0.8=0.44838,

那么如果草已经湿润,求降雨的概率是 P(R=T|W=T)=P(R=T,W=T)/P(W=T)=0.16038/0.44838=0.3577.

另外一个题目可以用类似的方法进行求解,在此不再赘述。

虽然贝叶斯算法能够计算出条件概率,例如本次故障是由哪些原因导致的,但是这个需要长期收集数据,需要对历史数据进行积累,才能通过人工或者统计的方法得到以上表格的条件概率。但是在实际的环境中是较难获取这些数据的,需要大数据平台的支持,因此需要探索其他的解决方案。

FluxRank

在本论文中,为了克服贝叶斯网络模型中的一些问题,针对子机异常定位的场景,设计了一套技术方案,作者们称之为 FluxRank。

FluxRank_fig_2
FluxRank 的整体框架

FluxRank 这一模块的触发需要服务指标(Service KPI)的异常,因此需要对服务指标(Service KPI)进行异常检测。这里的服务指标通常指的是业务指标,包括某块 APP 的在线人数,某个接口的成功率,某个视频网站的卡顿数等指标。当服务指标出现了异常的时候,就启动 FluxRank 模块进行异常机器定位。

如果按照人工处理的流程来看,分成几个步骤:

  1. 异常检测部分:通过设定阈值或者某个简单的规则来进行异常检测,包括服务的 KPI(Service KPI)和机器的 KPI(machine KPIs);
  2. 手工检查异常的时间段,并且查看在异常的时间段内发生了什么情况;
  3. 运维人员根据自身的业务经验来对机器的故障程度做人工排序;
  4. 运维人员根据自身的业务经验来对故障进行处理,并且人工给出处理方案。

那么 FluxRank 所面临的挑战就有以下几点:

  1. 如何衡量海量 KPIs 的变化程度?在这里不仅有服务的 KPIs,还有机器的 KPIs。而机器的 KPIs 包括内存,硬盘,IO,CPU等诸多固定的指标,那么如何对这些海量的 KPI 曲线进行变化程度的衡量,为后续的指标排序做准备就成为了一个难点;
  2. 如何对 KPIs 进行异常性或者重要性的聚类,让运维人员能够一眼看出每个聚簇的差异或者异常程度?
  3. 如何对 KPIs 聚类的结果进行排序?

为了解决以上的问题,FluxRank 的框架有以下几个贡献点:

  1. 基于 Kenel Density Estimation 用于衡量海量 KPIs 在某一个时间段的变化程度和异常程度;
  2. 基于上一步生成的异常程度,对诸多机器所形成的特征使用距离公式或者相似度公式,然后使用 DBSCAN 聚类算法来对机器进行聚类;
  3. 在排序部分,对上一步的机器聚类结果进行排序;

Change Quantification

首先,来看一下 Change Quantification 是怎么样做出来的。这里的 Change Quantification 使用与衡量机器 KPIs 的变化程度,称之为 change degree。Change degree 可以用于 CPU,内存,IO 等诸多机器指标。为了达到衡量变化程度,需要一个非常重要的信息,那就是变化的开始时间,change start time,也就是说在哪个时刻时间序列开始出现了变化。于是在 Change Quantification 部分,就分成两部分:(1)用 absolute derivative 或者 CUSUM 算法获得变化开始时间(change start time);(2)用 Kernel Density Estimation(KDE)来计算变化程度(change degree)。

FluxRank_fig_1
重要的时间戳

正如上图所示,针对服务 KPIs(ervice KPIs),存在两个关键的时间点,那就是失败开始时间(Failure Start Time)T_{f} 和缓和开始时间(Mitigation Start Time)T_{m}。在失败开始时间 T_{f} 之前,可能有的机器已经出现了故障,因此变化开始时间(Change Start Time)T_{c} 小于或者等于 T_{f}。通常情况下,一个或者多个机器故障会在半小时(30 mins)甚至更短的时间内引发服务故障,因此,只需要假设 w_{1}=30 即可。关键时间点的排序为 T_{f}-w_{1}<T_{c}\leq T_{f}<T_{m}

对于服务 KPIs 的异常检测,FluxRank 中提到了两种方法:分别是 absolute derivative 和 CUSUM 方法。

  1. absolute derivative 方法:个人理解就是对时间序列进行一阶差分操作,然后对一阶差分来做时间序列异常检测,例如 3-sigma 等方法,一旦有明显的变化,就说明当前的时间点出现了突增或者突降;与该方法比较类似的一种方法是:MAD(Median Absolute Deviation)。对于一条时间序列 X=[x_{1},\cdots,x_{n}] 而言,MAD 定义为 MAD = median_{1\leq i\leq n}(|x_{i}-median(X)|),而每个点的异常程度可以定义为:s_{i}=(x_{i}-median(X))/MAD = (x_{i}-median(X))/median_{1\leq i\leq n}(|x_{i}-median(X)|).s_{i} 较大或者较小的时候,表示上涨或者下降的异常程度。通过设置相应的阈值,同样可以获得时间序列的异常开始时间。
  2. CUSUM 算法也是用于时间序列异常检测的。对于一条时间序列 X=[x_{1},x_{2},\cdots,x_{n}],可以预估它的目标值(target value)\mu_{0},通常可以用均值来估计,也需要计算出这条时间序列的标准差 \sigma。通常设定 \mu_{1}=\mu_{0}+\delta\sigmaK=\delta\sigma/2=|\mu_{1}-\mu_{0}|/2。而 Tabular CUSUM 指的是迭代公式 C_{i}^{+}=\max[0,x_{i}-(\mu_{0}+K)+C_{i-1}^{+}]C_{i}^{-}=\max[0,(\mu_{0}-K)-x_{i}+C_{i-1}^{-}],初始值是 C_{0}^{+}=C_{0}^{-}=0。当累计偏差 C_{i}^{+} 或者 C_{i}^{-} 大于 H=5\sigma 的时候,表示 x_{i} 出现了异常,也就是 out of control。通过这个值,可以获得时间序列开始异常的时间。

从论文的描述来看,作者是使用 absolute derivative 来做异常检测的,并且定位其异常开始时间的准确率较高。

Change Degree

其次,我们来看一下变化程度(Change Degree)是怎么计算出来的,通过之前的计算,我们已经可以获得一些关键的时间戳,例如 T_{f}, T_{c}, T_{m} 等时间戳。根据变化开始时间(change start time)T_{c},同样需要设置一个窗口值 w_{2},例如 60 分钟(1 小时)。可以从两个时间段获取数据,正常时间段 [T_{c}-w_{2},T_{c}),异常时间段 [T_{c},T_{m}],分别获取到数据 \{x_{i}\}\{x_{j}\},前者是在变化开始时间之前的数据点,后者是在变化开始之后的数据点。于是,作者们通过概率值来计算变化程度 P(\{x_{j}\}|\{x_{i}\}),意思就是计算一个条件概率,在观察到 \{x_{i}\} 之后,得到 \{x_{j}\} 的概率值。

为了计算以上概率值,需要简化模型,因此这里需要假设 \{x_{j}\} 是独立同分布(iid)的,于是 P(\{x_{j}\}|\{x_{i}\})=\prod_{j=1}^{\ell}P(x_{j}|\{x_{i}\}),在这里 \ell 表示集合 \{x_{j}\} 的元素个数。 为了分别得到其上涨和下降到概率,则需要计算:

P_{o}(\{x_{j}\}|\{x_{i}\}) = \prod_{j=1}^{\ell}P(X\geq x_{j}|\{x_{i}\}),

P_{u}(\{x_{j}\}|\{x_{i}\}) = \prod_{j=1}^{\ell}P(X\leq x_{j}|\{x_{i}\}),

其中 P_{o}(\{x_{j}\}|\{x_{i}\}) 表示上涨的程度,P_{u}(\{x_{j}\}|\{x_{i}\}) 表示下降的程度。如果不想处理连乘的话,则需要处理连加:

o=-\frac{1}{\ell}\sum_{j=1}^{\ell}\ln P(X\geq x_{j}|\{x_{i}\}),

u =-\frac{1}{\ell}\sum_{j=1}^{\ell}\ln P(X\leq x_{j}|\{x_{i}\}).

在这里,作者们使用了三种概率分布函数,分别是 Beta 分布(Beta distribution),泊松分布(Poisson distribution),高斯分布(Gaussian distribution)。

Beta 分布的概率密度函数(probabilisty density function)是 f(x;\alpha,\beta) = x^{\alpha-1}(1-x)^{\beta-1}/B(\alpha,\beta),其中 B(\alpha,\beta)=\Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha+\beta)。在机器 KPIs 中,CPU 等指标可以用 Beta 分布;

泊松分布的概率密度函数是 f(x;\lambda)=\lambda^{x}e^{-\lambda}/x!,在机器 KPIs 中,SYS_OOM 用于衡量超出内存的频率,可以用泊松分布来做。

高斯分布的概率密度函数 f(x;\mu,\sigma) = e^{-(x-\mu)^{2}/2\sigma^{2}}/(\sqrt{2\pi}\sigma)

根据论文中的陈述,机器 KPIs 分别适用于以下概率分布:

FluxRank_table_1
机器指标遵循的概率分布

通过以上公式,可以计算出每一个机器的每一个指标的 ou 两个值。

Digest Distillation

再来看一下 Digest Distillation 部分,在此部分需要对机器的 KPIs 进行聚类操作;那么就需要构造特征向量和距离函数,再加上聚类算法即可获得结果。

每一个机器的特征向量是由之前计算的 Change Degree 形成的,由于每台机器的 KPIs 都是一样的,因此可以对它们的 KPIs 的 change degree 进行排列。假设每台机器有 k 个 KPIs,那么这台机器所对应的向量就是 (o_{0},u_{0},\cdots,o_{k},u_{k})

在描述向量的相似性方面,可以使用相关性的系数,包括 Pearson 系数,Kendall tau 系数,Spearman 系数。对于两条时间序列而言,X=[x_{1},\cdots,x_{n}]Y=[y_{1},\cdots,y_{n}]

Pearson 系数指的是:\rho_{X,Y}=\sum_{i=1}^{n}(x_{i}-\overline{x})\cdot(y_{i}-\overline{y})/\sqrt{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}\cdot\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}}, 其中 \overline{x}=\sum_{i=1}^{n}x_{i}/n\overline{y}=\sum_{i=1}^{n}y_{i}/n

Kendall tau 系数指的是:如果 (x_{i}>x_{j}y_{i}>y_{j}) 或者 (x_{i}<x_{j}y_{i}<y_{j}),那么称之为 concordant;如果 (x_{i}<x_{j}y_{i}>y_{j}) 或者 (x_{i}>x_{j}y_{i}<y_{j}),称之为 discordant;如果 x_{i}=x_{j} 或者 y_{i}=y_{j},则既不是 concordant,也不是 discordant。那么 Kendall tau 定义为 [\text{(number of concordant pairs)}-\text{(number of disordant paris)}] / [n(n-1)/2]

Spearman 系数指的是:通过原始序列变成秩次变量(rank)(从大到小降序排列即可),x_{i} 将会对应到 x_{i}',后者表示 x_{i} 在从大到小排序之后的序列 \{x_{i}\}_{1\leq i\leq n} 的位置,称之为秩次(rank),得到序列 X'=[x_{1}',\cdots,x_{n}']。对原始序列 Y=[y_{1},\cdots,y_{n}] 作同样的操作,得到 Y'=[y_{1}',\cdots,y_{n}']。一个相同的值在一列数据中必须有相同的秩次,那么在计算中采用的秩次就是数值在按从大到小排列时所在位置的平均值。如果没有相同的 rank,那么使用公式 r_{s} = 1-6\sum_{i=1}^{n}d_{i}^{2}/(n(n^{2}-1)) 进行计算,其中 d_{i}=x_{i}'-y_{i}';如果存在相同的秩次,则对 X'=[x_{1}',\cdots,x_{n}']Y'=[y_{1}',\cdots,y_{n}'] 来做 Pearson 系数即可,也就是 \rho_{X',Y'}

FluxRank_table_3
相似性函数的对比

通过作者们的实验,说明 Pearson 系数在这个数据集上效果最佳。在聚类算法的场景下,作者们同样对比了 KMeans,Gaussian Mixture,Hierarchical Clustering,DBSCAN 算法的效果,最后使用了 DBSCAN 的聚类算法。每一个聚类的结果,作者称之为一个 digest,也就是下图的 M1,M2 等聚类结果。

FluxRank_fig_6
聚类结果

Digest Ranking

最后,就是对聚类结果的排序工作。通过观察会发现:

  1. 变化开始时间(change start time)T_{c} 会在失败发生时间 T_{f} 之前;
  2. 不同的故障机器 KPIs 的 change start time 是非常接近的;
  3. 故障机器的一些 KPIs 的 change degree 是非常大的;
  4. 故障机器的占比是与故障原因相关的,故障机器越多说明故障越大;

在同一个模块下,如果出现故障机器的占比较大,那么故障将集中于这个模块下,可以通过 ratio 这个指标进行排序工作。

实验数据

在 FluxRank 论文中,作者们收集了 70 个真实的案例,然后根据实验效果获得了结果。

FluxRank_table_2
部分真实案例

在标记的时候,除了标记异常机器(Root Cause Machines,简称为 RCM)之外,也需要标记相关的指标(Relevant KPI,简称为 RK)。Root Cause Digest(简称为 RCD)把包括两个部分,不仅包括 RCM 的一个聚类结果,还包括聚类结果中的 top-five KPIs。

通过对 FluxRank 进行实验,可以得到如下实验数据:

FluxRank_table_4
FluxRank 的实验结果

其中 Recall@K 指的是:Recall@K=\text{\# of cases whose top-k digests contain RCDs}/ \text{\# of all cases}, 或者 Recall@K=\text{\# of cases whose top-k machines contain RCMs}/\text{\# of all cases}.

参考资料

  1. FluxRank: A Widely-Deployable Framework to Automatically Localizing Root Cause Machines for Software Service Failure Mitigation,Ping Liu,Yu Chen,Xiaohui Nie,Jing Zhu,Shenglin Zhang,Kaixin Sui,Ming Zhang,Dan Pei,ISSRE 2019, Berlin, Germany, Oct 28-31, 2019。
  2. Introduction to Statistical Quality Control,6th edition,Douglas C.Montgomery。
  3. Bayesian Network:https://en.wikipedia.org/wiki/Bayesian_network

 

符号计算中的深度学习方法

符号计算

符号计算一直是计算数学的重要领域之一。在开源领域,Python 的 SymPy 就可以支持符号计算。在商业化领域,Maple,Matlab,Mathematica 都能够进行符号计算。它们不仅能够做简单的实数和复数加减乘除,还能够支持数学分析,线性代数,甚至各种各样的大学数学课程。

随着人工智能的进一步发展,深度学习不仅在图像识别,自然语言处理方向上发挥着自身的价值,还在各种各样的领域展示着自己的实用性。在 2019 年底,facebook 两位研究员在 arxiv 上挂出了一篇文章《Deep Learning for Symbolic Mathematics》,在符号计算方向上引入了深度学习的工具。

要想了解符号运算,就要先知道在计算机中,是怎么对数学公式进行表示的。较为常见的表达式形如:

  • 2 + 3 * (5 + 2)
  • 3x^{2}+\cos(2x)+1
  • \frac{\partial^{2}\psi}{\partial x^{2}} - \frac{1}{v^{2}}\frac{\partial^{2}\psi}{\partial t^{2}}

在这里,数学表达式通常都会被表示成树的结构,其中树的内部节点是由算子(operator),函数(function)组成的,叶子节点由数字,变量,函数等组成。例如:

dlsm_figure1.png
图 1

图 1 的三幅图分别对应着上面的三个数学表达式。

在 Python 的 SymPy 工具中,同样可以对数学公式进行展示。其表示方法就是用 sympy.srepr

>>> import sympy
>>> x, y = sympy.symbols("x y")
>>> expr = sympy.sin(x+y) + x**2 + 1/y - 10
>>> sympy.srepr(expr)
"Add(Pow(Symbol('x'), Integer(2)), sin(Add(Symbol('x'), Symbol('y'))), Integer(-10), Pow(Symbol('y'), Integer(-1)))"
>>> expr = sympy.sin(x*y)/2 - x**2 + 1/y
>>> sympy.srepr(expr)
"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"
dlsm_figure2.png
图 2

SymPy 的 srepr 函数的输出用树状结构来表示就是形如图 2 这种格式。叶子节点要么是 x,y 这种变量,要么是 -1 和 2 这种整数。对于一元函数而言,例如 sin 函数,就是对应唯一的一个叶子。对于二元函数而言,例如 pow,mul,add,则是对应两个叶子节点。

论文方案

在 Deep Learning for Symbolic Mathematics 这篇论文中,作者们的大致思路是分成以下几步的:

  1. 生成数据;
  2. 训练模型;
  3. 预测结果;

第一步生成数据是为了让深度学习模型是大量的已知样本来做训练;第二步训练模型是用第一步的数据把端到端的深度学习模型进行训练;第三步预测结果是给一个函数或者一个微分方程,使用已经训练好的模型来预测结果,对预测出来的多个结果进行排序,选择最有可能的那个结果作为符号计算的值。

众所周知,深度学习的训练是依赖大量的样本数据的,那么要想用深度学习来解决符号计算的问题,就要解决样本少的问题。在这篇论文中,作者们把精力投入了三个领域,分别是:

  1. 函数的积分;
  2. 一阶常微分方程;
  3. 二阶常微分方程。

在生成数据之前,作者们对数据的范围进行了必要的限制:

  1. 数学表达式最多拥有 15 个内部节点;
  2. L = 11 表示叶子节点的值只有 11 个,分别是变量 x\{-5,-4,-3,-2,-1,1,2,3,4,5\}
  3. p_{1} = 15 表示一元计算只有 15 个,分别是 \exp, \log, \sqrt, \sin, \cos, \tan, \arcsin, \arccos, \arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh
  4. p_{2} = 4 表示二元计算只有四个,分别是 +, -, *, /;

意思就是在这个有限的范围内去生成深度学习所需要的数据集。

积分数据的生成

在微积分里面,积分指的是求导的逆运算,那么形如 (f',f) 的表达式就可以作为深度学习的积分训练数据。生成积分的话其实有多种方法:

第一种方法:前向生成(Forward Generation,简写为 FWD)。主要思路就是在以上的数据范围内随机生成各种各样的方程 f,然后使用 SymPy 或者 Mathematica 等工具来计算函数 f 的积分 F,那么 (f,F) 就可以作为一个训练集。当然,有的时候函数 f 的积分是无法计算出来的,那么这种计算表达式就需要进行放弃,就不能放入训练集。

第二种方法:反向生成(Backward Generation,简写为 BWD)。由于积分是求导的逆运算,可以在以上的数据范围内随机生成各种各样的方程 f,然后计算它们的导数 f',于是 (f',f) 就可以放入积分数据的训练集。

第三种方法:分部积分(Backward generation with integration by parts,简写为 IBP)。根据分部积分的公式,如果 F'=f, G'=g,那么 \int F(x)g(x)dx=F(x)G(x) - \int f(x)G(x)dx。对于两个随机生成的函数 F, G,可以计算出它们的导数 f, g。如果 fG 在训练集合里面,那么就把 Fg 的积分计算出来放入训练集合;反之,如果 Fg 在训练集合里面,那么就把 fG 的积分计算出来放入训练集合。如果 fGFg 都没有在训练集合,并且都无法积分出来,那么就放弃该条数据。

三种方法的比较可以参见表 1,从表 1 可以看出通过分部积分(Integration by parts)所获得的样本表达式相对于前向生成和反向生成都比较长。

dlsm_table1.png
表 1

一阶常微分方程的生成

一阶常微分方程只有该函数的一阶导数,因此在构造函数的时候,作者们用了一个技巧。在随机生成表达式的时候,叶子节点的元素只从 \{x, -5,-4,-3,-2,-1,1,2,3,4,5\} 选择一个,于是随机把其中的一个整数换成变量 c。例如:在 x\log(2/x) 中就把 2 换成 c,于是得到了一个二元函数 f(x,c) = x\log(c/x)。那么就执行以下步骤:

  1. 生成二元函数 f(x,c) = x\log(c/x)
  2. 求解 c,得到 c = xe^{f(x)/x}
  3. x 进行求导得到 0 = e^{f(x)/x}(1+f'(x)-f(x)/x) = 0
  4. 简化后得到 x+xf'(x) - f(x) =0,也就是 x+xy'-y=0

此时,一阶常微分方程的训练数据就是 (x+xy'-y=0, x\log(c/x))

二阶常微分方程不仅可能由该函数的一阶导数,还必须有二阶导数,那么此时就要求导两次:

  1. 生成三元函数 f(x,c_{1},c_{2}) = c_{1}e^{x}+c_{2}e^{-x}
  2. 求解 c_{2} 得到 c_{2} = f(x,c_{1},c_{2}) e^{x}- c_{1}e^{2x}
  3. x 进行求导得到 0 = e^{x}(\partial f(x,c_{1},c_{2})/\partial x + f(x,c_{1},c_{2})) - 2c_{1}e^{2x} = 0
  4. 求解 c_{1} 得到 c_{1} = e^{-x}(\partial f(x,c_{1},c_{2})/\partial x+f(x))/2
  5. x 进行求导得到 0 = e^{-x}(\partial^{2} f(x,c_{1},c_{2})/\partial x^{2} - f(x,c_{1},c_{2}))=0
  6. 简化后得到 \partial^{2} f(x,c_{1},c_{2})/\partial x^{2} - f(x,c_{1},c_{2})=0,也就是 y''-y=0

那么此时的二阶微分方程的训练数据就是 (y''-y=0, c_{1}e^{x}+c_{2}e^{-x})

需要注意的事情就是,在生成数据的时候,一旦无法求出 c_{1}, c_{2} 的表达式,该数据就需要放弃,重新生成新的数据。

数据处理

  1. 数学表达式的简化(expression simplification):例如 x+1+1 可以简化成 x+2\sin^{2}(x)+\cos^{2}(x) 可以简化成 1。
  2. 参数的简化(coefficient simplification):例如 \log(x^{2}) + c\log(x) 可以简化成 c\log(x)
  3. 无效表达式的过滤(invalid expression filter):例如 \sqrt{2}, \log(0) 等。

树状结构的表达式,是使用前缀表达式来写成一个句子的。例如 2+3 就写成 + 2 3,2 + x 就写成 + 2 x。

模型训练

在这里,作者们用了 Transformer 模型,8 attention heads,6 layers,512 个维度,并且发现用更复杂的模型并没有提升其效果。在预测的时候,使用不同的 Beam Size,其准确率是不一样的,在 Beam Size = 50 的时候,效果比较好。参见表 2。

dlsm_table2.png
表 2

在与其他数学软件的比较中, 作者限制了 Mathematica 的运行时间为 30s。

dlsm_table3.png

并且举出了几个现有模型能够计算出来,Mathematica 无法计算的例子。

dlsm_table4.png

在求解的等价性方面,可以根据 Score 逆序排列,然后这个例子的 Top10 都是等价的。

dlsm_table5.png

在使用 SymPy 的过程中,可以获得各种各样的积分表达式如下:

dlsm_table7.png

结论

符号计算在 1960 年代末就已经在研究了,有诸多的符号计算软件,例如 Matlab,Mathematica,Maple,PARI,SAGE 等。在这篇论文中,作者们使用标准的 seq2seq 模型来对生成的数据进行训练,然后获得积分,一阶常微分方程,二阶常微分方程的解。在传统符号计算的基础上,开拓了一种新的思路。

深度学习在时间序列分类中的应用

本篇博客将会分享几篇文章,其内容主要集中在深度学习算法在时间序列分类中的应用。

无论是图像分类,文本分类,还是推荐系统的物品分类,都是机器学习中的常见问题和应用场景。同样的,时间序列的分类问题也是研究时间序列领域的重要问题之一。近期,神经网络算法被用于物体识别,人脸识别,语音分类等方向中,于是有学者用深度学习来做时间序列的分类

假设

X=\{x_{1},\cdots,x_{n}\}

是一个长度为 n 的时间序列,高维时间序列

X = \{X^{1},\cdots,X^{M}\}

则是由 M 个不同的单维时间序列而组成的,对于每一个 1\leq i\leq M 而言,时间序列 X^{i} 的长度都是 n. 而时间序列的分类数据通常来说都是这种格式:数据集

D=\{(X_{1},Y_{1}),(X_{2},Y_{2}),\cdots,(X_{N},Y_{N})\}

表示时间序列与之相应的标签,而 Y_{i} 是 one hot 编码,长度为 K(表示有 K 个类别)。

整体来看,时间序列分类的深度学习方案大体是这个样子的:输入的是时间序列,通过某个神经网络算法进行端到端的训练,最后输出相应的分类概率。

ReviewFigure1.png

而做时间序列分类的深度学习算法分成生成式(Generative)判别式(Discriminative)两种方法。在生成式里面包括 Auto Encoder 和 Echo State Networks 等算法,在判别式里面,包括时间序列的特征工程和各种有监督算法,还有端到端的深度学习方法。在端到端的深度学习方法里面,包括前馈神经网络,卷积神经网络,或者其余混合模型等常见算法。

ReviewFigure5.png

深度学习算法在时间序列分类中的应用:Baseline

这一部分将会介绍用神经网络算法来做时间序列分类的 Baseline,其中包括三种算法,分别是多层感知机(MLP),FCN(Fully Convolutional Network)和 ResNet。其论文的全名是《Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline》。这篇论文中使用的神经网络框架如下图所示:

DNN_Baseline_结构1.png

多层感知机(MLP)模型使用了全连接层,每个隐藏层大约 500 个神经元,然后使用 ReLU 作为激活函数,同时使用 Dropout 来防止过拟合,最后一层是 Softmax 层。MLP 中一个基础的块包括:

\tilde{x} = f_{dropout, p}(x),

y = W\cdot \tilde{x} + b,

h = ReLU(y).

除了前馈神经网络之外,全卷积网络(FCN)同样可以作为时间序列的特征提取工具,一个卷积块包括:

y = W \otimes x + b,

s = BN(y),

h = ReLU(s),

在这里,\otimes 指的是卷积算子,BN 指的是 Batch Normalization,ReLU 则是激活函数。

Residual Network 是在 FCN 的基础上进行的改造。令 Block_{k} 来表示第 k 个卷积块,而 Residual 块就定义为:

h_{1} = Block_{k_{1}}(x),

h_{2} = Block_{k_{2}}(h_{1}),

h_{3} = Block_{k_{3}}(h_{2}),

y=h_{3} + x,

\hat{h}=ReLU(y).

其中,k_{1} = 64, k_{2} = 128, k_{3} = 128

ReviewFigure6_ResNet.png

评价指标

Mean Per Class Error (in Multi-class Classification only) is the average of the errors of each class in your multi-class data set. This metric speaks toward misclassification of the data across the classes. The lower this metric, the better.

模型的评价指标使用的是 Mean Per-Class Error,指的是在多分类场景下,每一类(Class)错误率的平均值。换句话说,一个数据集 D=\{d_{k}\}_{1\leq k\leq K} 是由 K 个类的元素构成的,每个类的标签是 C=\{c_{k}\}_{1\leq k\leq K},通过模型其实可以计算出模型对每一个类的错误率 e_{k},那么模型的 MPCE 就是:MPCE= \sum_{1\leq k\leq K} e_{k}/K.

其实验结论是:

DNN_Baseline_实验数据1.png

MSCNN

MSCNN 的全称是 Multi-Scale Convolutional Neural Networks,相应的论文是《Multi-Scale Convolutional Neural Networks for Time Series Classification》

在时间序列的分类算法里面,通常来说,可以分成以下几种:

  1. 基于距离的方法(distance-based methods):kNN,SVM(相似核),DTW;
  2. 基于特征的方法(feature-based methods):SVM,逻辑回归等;
  3. 基于神经网络的方法(neural network-based methods):CNN 等;

正如前文所提到的,一条时间序列通常可以写作 T=\{t_{1},\cdots,t_{n}\},其中 t_{i} 表示在时间戳 i 下的取值,并且时间序列 T 的长度是 n。在时间序列分类的场景下,每一条时间序列对应着唯一的一个标签(label),也就是说 D=\{(T_{i},y_{i})\}_{i=1}^{N}。其中 D 集合里面包含 N 条时间序列,每条时间序列 T_{i} 对应着一个标签 y_{i}y_{i} 表示分类值集合 \mathcal{C} = \{1,\cdots,C\} 中的元素,C\in \mathbb{Z}^{+}

MSCNN 的整体结构:

在 Multi-Scale Convolutional Neural Network(MSCNN)中,包括几个串行的阶段,

  1. 变换阶段(Transformation Stage):包括恒等变换,下采样,谱变换等变换方式,每一种方式都是一个分支,并且也是卷积神经网络的输入;
  2. 局部卷积(Local Convolution Stage):使用卷积层来对不同的输入提取特征,不同的输入分支之间是相互独立的,输出的时候都会经过一个最大值池化(max pooling)的过程;
  3. 整体卷积(Full Convolution Stage):把上一步提取到的特征进行拼接(concatenate),然后使用全连接层并且加上一个 softmax 层来做多分类。

如下图所示,MSCNN 是一个端到端的训练网络结构,所有参数都是通过后向传播算法得到的。

MSCNN结构1.png

首先来看神经网络的第一步,变换阶段(Transformation Stage),也就是神经网络的多尺度的输入。在不同的尺度下,神经网络能够提炼到不同类型的特征。长期的特征(long-term features)反映了时间序列的整体趋势,短期的特征(short-term features)反映了时间序列的局部的微妙变化。要想判断时间序列的形状,不仅要参考整体的特征,也要参考局部的特征,这两者对于判断时间序列的形状都具有一定的辅助作用。

在 Transformation Stage,identity map 指的是恒等变换,也就是说时间序列是原封不动的作为神经网络的输入数据。对于 Smoothing Transformation,指的就是对时间序列进行必要的平滑操作,将新的时间序列作为神经网络的输入数据。在这种情况下,我们可以对时间序列 T=\{t_{1},\cdots,t_{n}\} 进行移动平滑,i.e.

T^{\ell}=(x_{i}+x_{i+1}+\cdots+x_{i+\ell-1})/\ell, 0\leq i\leq n-\ell+1,

其中的 \ell\in \mathbb{Z}^{+} 表示窗口长度。对于不同的窗口长度 \ell,我们可以的到不同的时间序列平滑序列,但是它们的长度都是一样的,都是原始的时间序列长度 n

而下采样(down sampling)指的则是对时间序列的间隔进行抽样操作。假设时间序列 T=\{t_{1},\cdots,t_{n}\},下采样的比例是 k,也就是说我们每隔 k 个点保留时间序列的取值,i.e.

T^{k} = \{t_{1+k\cdot i}\}, 0\leq i \leq [(n-1)/k].

用这种方法,我们可以对 k=1,2,3,\cdots 来进行下采样的时间序列提取。在进行了恒等变换,平滑变换,下采样之后,时间序列就可以变成多种形式,作为神经网络的输入。

其次,在神经网络部分,本文使用了一维(1-D)的卷积层和最大值池化的方法来提取特征,并且在局部卷积阶段之后把提炼到的抽象特征进行拼接(concatenate)。拼接完了之后,持续使用卷积层和池化层进行特征的提取,然后使用全连接层(fully connected layers)和 softmax 层来进行时间序列类别的预测。

数据增强

在深度学习里面,由于是端到端的训练网络,因此是需要相对多的样本数据的,于是有的时候需要进行数据增强(data augmentation)。也就是在现有的基础上获得更多的训练数据。对于时间序列 T=\{t_{1},\cdots,t_{n}\},可以定义一个子序列:

S_{i:j} = \{t_{i}, t_{i+1},\cdots,t_{j}\}, 1\leq i,\leq j\leq n

对于正整数 s\in \mathbb{Z}^{+},可以生成 n-s+1 个子序列如下所示:

Slicing(T,s) = \{S_{1:s},S_{2:s+1},\cdots,S_{n-s+1:n}\},

这些子序列的标签与原始的时间序列 T 是一样的。

本文用到的数据集情况如下表所示:

MSCNN数据集1.png

实验数据如下图所示:

MSCNN实验1MSCNN数据集2

结论

本文使用了 MCNN 来对变换之后的时间序列进行特征提取,并且进行了端到端的模型训练。并且也讨论了卷积神经网络使用在 shapelet learning 上的一些逻辑和方法,然后解释了 MSCNN 在时间序列分类上能够有不错表现的原因。但是所有的 TSC 数据集都不算特别大,对端到端的训练模式有一定的限制。

GASF 和 GADF 方法

这篇文章《Imaging Time Series to Improve Classification and Imputation》介绍了如何把时间序列转换成图像,包括 GASF 方法和 GADF 方法。

假设时间序列是 X = \{x_{1},\cdots, x_{n}\},长度是 n,我们可以使用归一化方法把时间序列压缩到 [0,1] 或者 [-1,1]

\tilde{x}_{0}^{i} = (x_{i} - \min(X))/(\max(X) -\min(X)),

\tilde{x}_{-1}^{i} = ((x_{i} - \max(X)) + (x_{i}-\min(X)))/(\max(X) - \min(X)),

此时的 \tilde{x}_{0}^{i}\in[0,1], \forall 1\leq i\leq n\tilde{x}_{-1}^{i} \in [-1,1],\forall 1\leq i\leq n。于是可以使用三角函数来代替归一化之后的值。下面通用 \tilde{x}_{i} 来表示归一化之后的时间序列,令 \phi_{i} = \arccos(\tilde{x}_{i})\tilde{x}_{i} \in [-1,1]1\leq i\leq n。因此,\phi_{i}\in[0,\pi],于是,\sin(\phi_{i}) \geq 0

定义矩阵 GASF(Gramian Angular Summation Field)

GASF = [\cos(\phi_{i}+\phi_{j})]_{1\leq i,j\leq n}

于是,

GASF = [\cos(\phi_{i})\cdot \cos(\phi_{j}) - \sin(\phi_{i})\cdot \sin(\phi_{j})]_{n\times n}

\tilde{X}=(\cos(\phi_{1}),\cdots,\cos(\phi_{n}))^{T},可以得到

GASF = \tilde{X} \cdot \tilde{X}^{T} - \sqrt{I - \tilde{X}^{2}} \cdot \sqrt{I - \tilde{X^{T}}^{2}}

以上的都是 element 乘法和加法,I 表示单位矩阵。它的对角矩阵是

diag(GASF) = \{\cos(2\phi_{1}),\cdots, \cos(2\phi_{n})\}

= \{2\cos^{2}(\phi_{1})-1,\cdots,2\cos^{2}(\phi_{n})-1)\} = \{GASF_{ii}\}_{1\leq i\leq n}.

如果是使用 min-max normalization 的话,是可以从 diag(GASF) 反推出 \tilde{x}_{i} 的。因为,2 \tilde{x}_{i}^{2} - 1 = 2\cos^{2}(\phi_{i}) - 1 = GASF_{ii},可以得到 y_{i} = \sqrt{(GASF_{ii}+1)/2}

定义 GADF(Gramian Angular Difference Field)如下:

GADF = [\sin(\phi_{i}-\phi_{j})]_{1\leq i,j\leq n}

= [\sin(\phi_{i})\cdot cos(\phi_{j}) - \cos(\phi_{i})\cdot\sin(\phi_{j})]_{1\leq i,j\leq n}

= \sqrt{1-X^{2}}\cdot X^{T} - X \cdot \sqrt{1-(X^{T})^{2}}.

GASFGADF1.png

Markov Transition Field(MTF)

除了 GSAF 和 GSDF 之外,《Imaging Time Series to Improve Classification and Imputation》,《Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks》,《Encoding Temporal Markov Dynamics in Graph for Time Series Visualization》也提到了把时间序列转换成矩阵 Image 的算法 MTF。在 pyts 开源工具库里面,也提到了 MTF 算法的源码。

假设时间序列是 X = \{x_{1},\cdots,x_{n}\},我们把它们的值域分成 Q 个桶,那么每一个 x_{i} 都可以被映射到一个相应的 q_{j} 上。于是我们可以建立一个 Q\times Q 的矩阵 Ww_{ij} 表示在桶 j 中的元素被在桶 i 中的元素跟随的概率,也就是说 w_{ij} = P(x_{t}\in q_{i}|x_{t-1}\in q_{j}),同时,它也满足 \sum_{j=1}^{Q}w_{ij} =1。于是,得到矩阵 W = (w_{ij})_{1\leq i,j\leq Q}

MTF1.png

除此之外,我们也能够计算一个迁移概率矩阵 M。其中 $m_{ij}$ 表示桶 i 中的元素迁移至桶 j 中的概率 P(q_{i}\rightarrow q_{j}),同样有 \sum_{1\leq j\leq Q} m_{ij} =1。因此,我们同样可以构造出一个 Q\times Q 的矩阵将时间序列可视化。

时间序列的降维方法有两种:

  1. 分段聚合(PAA):使用局部平均等方法,把时间序列进行降维;
  2. 核变换(Kernel):使用 Bivariate Gaussian 核或者均值核来把时间序列进行降维。

在把时间序列进行可视化之后,对于时间序列分类的场景,就可以使用 CNN 的技术方案来做了。如下图所示:

tildeCNN.png

其实验数据效果如下:

tildeCNN实验数据1.png

Time Le-Net

在本篇文章《Data Augmentation for Time Series Classification using Convolutional Neural Networks》中,主要用到了卷积神经网络来做时间序列的分类。

time_lenet_1.png

除此之外,也使用了不少数据增强(Data Augmentation)的技术。包括前面提到的 Window Slicing(WS)方法。也考虑了 Warping 的变换技巧,例如 Warping Ratio = 1/2 或者 2。这种时间扭曲指标比率可以通过交叉验证来选择。该方法叫做 Window Warping(WW)技术。

另外也有其余论文使用卷积神经网络做时间序列分类,例如《Convolutional neural networks for time series classification》,如下图所示:

CNN_figure1.png

Multi-Channels Deep Convolutional Neural Networks

在高维时间序列的分类中,有人提出用多通道的卷积神经网络来进行建模。

multichannelcnn_figure3.png

整体来看,分成四个部分。前三个部分作为特征提取工具,最后一层作为分类工具。

  1. Filter Layer:
  2. Activation Layer:
  3. Pooling Layer:
  4. Fully-Connected Layer:

实验对比数据如下:

multichannelcnn_table1.png

结论:

在本篇博客中,列举了一些深度学习算法在时间序列分类中的应用,也介绍了部分数据增强的方法和时间序列数据变换的方法。从以上各篇文章的介绍来看,深度学习在时间序列分类领域上应该是大有可为的。

参考资料:

  1. Wang Z, Yan W, Oates T. Time series classification from scratch with deep neural networks: A strong baseline[C]//2017 international joint conference on neural networks (IJCNN). IEEE, 2017: 1578-1585.
  2. Cui Z, Chen W, Chen Y. Multi-scale convolutional neural networks for time series classification[J]. arXiv preprint arXiv:1603.06995, 2016.
  3. Wang Z, Oates T. Imaging time-series to improve classification and imputation[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.
  4. Wang Z, Oates T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]//Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.
  5. Liu L. Encoding Temporal Markov Dynamics in Graph for Time Series Visualization, Arxiv, 2016.
  6. Fawaz H I, Forestier G, Weber J, et al. Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963.
  7. Zhao B, Lu H, Chen S, et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 162-169.
  8. Le Guennec A, Malinowski S, Tavenard R. Data augmentation for time series classification using convolutional neural networks[C]. 2016.

时间序列的标签

本篇文章是为了介绍一种基于少量样本标记而获得更多样本的方法,论文的原文是《Label-Less: A Semi-Automatic Labeling Tool for KPI Anomalies》,是清华大学与多家公司(必示科技,中国建设银行等)的合作论文。

在时间序列异常检测中,因为标注的成本比较大,于是需要寻找一种较少而高效地标注时间序列异常点的方法。在该论文中,Alibaba,Tencent,Baidu,eBay,Sogou提供了上千条时间序列(每条时间序列大约是2-6个月的时间跨度),作者们进行了 30 条 KPIs 的标注工作。但是其标注成本依旧是很大的,于是作者们想到了一种异常相似搜索(anomaly similarity search)的算法,目标是对已经标注好的时间序列异常模式进行模版搜索。目的就是达到 label-less,也就是较少的标注而获得更多的标注数据。

在本篇论文中,在异常检测的过程中,作者们使用了时间序列的预测模型(time series prediction models)来获得时间序列的特征,使用了孤立森林(Isolation Forest) 来对时间序列的特征来做无监督的异常检测。并且其效果由于 one class svm 算法和 local outlier factor 算法。在搜索的部分,作者使用了加速版的 DTW 算法(accelerated dynamic time warping approach)来做相似度的搜索和模式的匹配。其中也尝试了各种技巧和方法,包括 constrained DTW,LB Keogh 方法,early stopping 算法等工具。

整个 Label-Less 的架构图如下表示:

Fig2.png

其中的 Operators 指的是业务运维人员,面对着无标记的多条时间序列曲线。系统首先会进行无监督的异常检测算法啊,包括时间序列的预处理(归一化等)操作,然后使用差分(Difference),移动平均算法(moving average),带权重的移动平均算法(weighted moving average),指数移动平均(ewma),holt winters,ARIMA 等算法来做特征的提取。此时,对于不同的时间序列预测工具,我们可以得到不同的预测值,然后把预测值减去实际值并且取绝对值,就得到时间序列的误差序列。i.e. |p_{i} - x_{i}| 就作为数据点 x_{i} 的特征。

在这种情况下,由于用了六个时间序列预测算法,因此原始的时间序列 X (n\times 1) 就可以变成特征矩阵 X' (n\times 1)。对于特征矩阵 X' 可以使用 isolation forest 来做无监督的异常检测并且做阈值的设定;如下图所示:

Fig3.png

而另外的一部分的异常相似搜索(anomaly similarity search)是在第一部分的基础上在做的,Unsupervised Anomaly Detection 会输出疑似异常或者候选异常,并且基于已知的异常模板(Anomaly Template)进行相似度的匹配,此时可以使用 accelerated DTW 算法,选择出最相似的 Top-K 异常,然后运维人员进行标注,得到更多的样本。

由于,对于两条长度分别是 mn 的时间序列,DTW 相似度算法的时间复杂度是 O(mn),因此在搜索的时候需要必要的加速工作。在这种地方,作者们使用了 LB-Kim,LB-Keogh,LB-Keogh-Reverse 算法来做搜索的加速工作。而这些的时间复杂度是 O(m+n)。整体的思路是,如果两条时间序列 qc 的 LB-Kim,LB-Keogh,LB-Keogh-Reverse 的下界大于某个阈值,则不计算它们之间的 DTW 距离。否则就开始计算 DTW。并且在计算 DTW 的时候,如果大于下界,则会提前终止(early stopping),不会继续计算下去。如果都没有大于阈值,则把这个候选曲线和 dist 距离放入列表,最后根据列表中的 dist 来做距离的逆序排列。

整体流程如下:

AnomalySimilaritySearch

其运行速度也比直接使用 DTW 快不少:

Table3.png

Label-Less 的交互页面如下所示:

图(a)表示使用无监督算法获得的疑似异常;

图(b)表示使用异常搜索算法获得的异常结果。

Fig10.png

下图则表示模板,m 表示模板的长度,c 表示相似的异常候选集个数;

Fig11

总结:

整体来看,本文提供了一种通过少量人工标注无监督算法相似度算法来获得更多样本的方法。在候选的时间序列条数足够多的时候,是可以进行时间序列的相似度匹配的。这给未来在运维领域提供海量的时间序列标注数据给予了一定的技术支持。

 

时间序列的联动分析

背景介绍

在互联网公司里面,通常都会监控成千上万的时间序列,用于保障整个系统或者平台的稳定性。在这种情况下,如果能够对多条时间序列之间判断其是否相关,则对于监控而言是非常有效的。基于以上的实际情况,清华大学与 Alibaba 集团在2019年一起合作了论文《CoFlux: Robustly Correlating KPIs by Fluctuations for Service Troubleshooting》,并且发表在 IWQos 2019 上。CoFlux 这个方法可以对多条时间序列来做分析,并且主要用途包括以下几点:

  1. 告警压缩和收敛;
  2. 推荐与已知告警相关的 Top N 的告警;
  3. 在已有的业务范围内(例如数据库的实例)构建异常波动传播链;

kpis.png

CoFlux 的整体介绍

从论文的介绍中来看,CoFlux 的输入和输出分别是:

输入:两条时间序列

输出:这两条时间序列的以下信息

  1. 波动相关性:两条时间序列是否存在波动相关性?
  2. 前后顺序:如果两条时间序列相关,那么它们的前后波动顺序是什么?是同时发生异常还是存在固定的前后顺序?
  3. 方向性:如果两条时间序列是波动相关的,那么它们的波动方向是什么?是一致还是相反?

Remark. CoFlux 的关键点就是并没有对时间序列做异常检测算法,而是直接从时间序列的历史数据(历史半个月或者一个月)出发,判断两条时间序列之间的波动相关性,并且进一步的分析先后顺序与波动方向。

从论文的介绍中来看,CoFlux 的流程图如下图所示:

coflux流程图1

如果两条时间序列 XY 存在波动相关性,则需要输出这两条时间序列的波动先后顺序和是否同向波动。如果两条时间序列 XY 并不存在波动相关性的话,则不需要判断波动先后顺序和是否同向波动。

coflux流程图2

CoFlux 的细节阐述

已知一个长度是 n 的时间序列 S=\{s_{1},\cdots,s_{n}\},对于任意一个 detector,可以得到一条关于 S 的预测值曲线 P=\{p_{1},\cdots,p_{n}\}。于是针对某个 detector 可以得到一个波动特征序列 E=\{\epsilon_{1},\cdots,\epsilon_{n}\},其中 \epsilon_{i} = s_{i} - p_{i}1\leq i\leq n。因此,一个detector 可以对应一个波动序列特征,也是一个时间序列。因此,对于 m 个 detector,可以对应 m 条波动特征序列,并且它们的长度都是 n

在 CoFlux 算法的内部,根据不同的参数使用了总共 86 个 detector,大致列举如下:

  • Difference:根据昨天,七天前的数据来做差分;
  • Holt-Winters:\{\alpha,\beta,\gamma\} \in \{0.2,0.4,0.6,0.8\}
  • 历史上的均值 & 历史上的中位数:1,2,3,4 周;
  • TSD & TSD 中位数:1,2,3,4 周;
  • Wavelet:1,3,5,7 天;
  • 移动平均算法:MA,WMA,EWMA。PS:根据作者们的说法,在这里,MA等方法并不适用。

detectors

根据直觉来看,

  • 对于任何一条时间序列 kpi,总有一个 detector 可以相对准确地提炼到其波动特征;
  • 如果两条时间序列 XY 波动相关,那么 X 的一个波动特征序列与 Y 的一个波动特征序列应该也是相关的;

Remark. 两条时间序列的波动特征可以对齐同一个 detector,也可以不做对齐工作。如果是前者的话,时间复杂度低;后者的话,时间复杂度高。

下图是从时间序列中提取波动特征曲线的案例:

fluxfeatures.png

提炼时间序列的波动曲线特征只是第一步,后续 CoFlux 还有几个关键的步骤:

  • 特征工程的扩大(amplify): 对波动序列特征进行放大,让某些波动序列特征更加明显;
  • Correlation Measurement:用于解决时间序列存在时间前后的漂移,两条时间序列之间存在 lag 的情况,因此需要对其中一条时间序列做平移操作;
  • CoFlux 考虑了历史数据(历史半个月或者一个月)作为参考,并且一个范围内的 kpi 数量不超过 60 条;

下面来一一讲解这些技术方案,对于每一条波动特征曲线(Flux-Features),按照以下几个步骤来进行操作:

Step 1:对波动特征曲线 E=\{\epsilon_{1},\cdots,\epsilon_{n}\} 做 z-score 的归一化,i.e.

\mu = \frac{\sum_{i=1}^{n}\epsilon_{i}}{n},
\delta = \sqrt{\frac{\sum_{i=1}^{n}(\epsilon_{i}-\mu)^{2}}{n}}.

Step 2:对归一化之后的波动特征曲线做特征放大(feature amplification):定义函数 f_{\alpha,\beta}(x) 如下:

f_{\alpha,\beta}(x)= \begin{cases} e^{\alpha\min(x,\beta)} - 1, \text{ when } x\geq 0,\\ -e^{\alpha\min(|x|,\beta)} + 1, \text{ when } x< 0. \end{cases}

E=\{\epsilon_{1},\cdots,\epsilon_{n}\} 放大之后的波动特征曲线(amplified flux feature)就是:\hat{E}=\{f(\epsilon_{1}),\cdots,f(\epsilon_{n})\}.

Step 3:对于两条放大之后的波动特征曲线(amplified flux features)G=\{g_{1},\cdots,g_{\ell}\}H=\{h_{1},\cdots,h_{\ell}\},可以计算它们之间的相关性,先后顺序,是否同向。

G_{s}= \begin{cases} \{0,\cdots,0,g_{1},\cdots, g_{\ell-s}\}, \text{ when } s\geq 0, \\ \{g_{1-s},\cdots,g_{\ell},0,\cdots,0\}, \text{ when } s< 0. \end{cases}

这里的 0 的个数是 |s| 个。其中,-\ell<s<\ell。特别地,当 s=0 时,G_{0}=\{g_{1},\cdots,g_{s}\}=G,那么我们可以定义 G_{s}H 的内积是:R(G_{s},H) = G_{s}\cdot H,

这里的 \cdot 指的是向量之间的内积(inner product)。同时可以定义相关性(Cross Correlation)为:CC(G_{s},H) = \frac{R(G_{s},H)}{\sqrt{R(G_{s},G_{s})\cdot R(H,H)}}.

由于波动有可能是反向的,那么在这里我们不仅要考虑相关性是大于零的情况,也需要考虑小于零的情况。于是,

minCC = \min_{-\ell<s<\ell}CC(G_{s},H),
maxCC = \max_{-\ell<s<\ell}CC(G_{s},H).

则最小值或者最大值的指标分别是

s_{1}=argmin_{-\ell<s<\ell}CC(G_{s},H),
s_{2}=argmax_{-\ell<s<\ell}CC(G_{s},H).


FCC(G,H) = \begin{cases} (minCC, s_{1}), \text{ when } |maxCC|<|minCC|, \\ (maxCC, s_{2}), \text{ when } |maxCC|\geq|minCC|. \end{cases}

从定义中可以看出,FCC(G,H) 是一个元组,里面蕴含着三个信息,分别是相关性,波动方向,前后顺序。FCC(G,H) \in [-1,1],越接近 1 或者 -1 就表示放大之后的波动特征曲线 GH 越相关。正值的 FCC(G,H) 表示 GH 的波动方向相同,是正相关;负值的 FCC(G,H) 表示 GH 的波动方向想法,是负相关。通过对 s<0 或者 s\geq 0 的分析就可以判断先后顺序。因此,CoFlux 方法的是通过对 FCC(G,H) 的分析来得到最终结果的。

在最后的相关性分析里面,其实伪代码正如论文中所示。先考虑是否存在相关性,再考虑基于相关性下的先后顺序和波动方向。

correlationmeasurement

 

CoFlux 的实战效果

从论文中看,CoFlux 的数据集基本上是小于 60 条时间序列曲线。其中包括 CPU,错误率,错误数,内存使用率,成功率等不同的指标。

datasets

datasets2.png

从运行时间上来看,对于一周的时间序列集合(< 60条)而言,CoFlux 基本上能够在 30 分钟内计算完毕,得到最终的运算结果。

executiontime.png

其效果的评价指标基本上就是机器学习中的常见评价指标了,准确率,召回率之类的。

评价指标

从 F1-Score 的评价指标来看,CoFlux 的效果优于其他算法。

experiments.png

告警压缩

如果对时间序列之间进行告警压缩的话,其实可以大量减少运维人员的工作量。在 CoFlux 里面,时间序列曲线被分成了三类,也就是三个颜色最深的模块。因此 21 条时间序列的告警量在实际中有可能只有三条告警。

alarmclustering

告警关联

在实际运维场景中,除了对告警进行压缩之外,也需要对告警进行关联性的分析。例如一条告警发生了,运维人员都希望知道与它相关的其他告警是什么,这样可以方便运维人员定位问题。

alarmcorrelation

构建告警关系链

在一些相对封闭的场景下,例如 mysql 数据库,通过对它里面的时间序列进行分析。不仅可以得到告警之间是否存在相关性,还可以对先后顺序,波动顺序进行分析。

mysql

 

结论

时间序列之间的联动分析是在运维领域场景下的常见技术,不仅可以做告警的压缩,也能够做告警的关联,还能够构建告警的关系链。在未来的工作中,作者们提到将会用深度学习的方法来进行关联和告警的分析,从而进一步加深对时间序列的研究。

计算机视觉中的注意力机制

引言

在机器翻译(Machine Translation)或者自然语言处理(Natural Language Processing)领域,以前都是使用数理统计的方法来进行分析和处理。近些年来,随着 AlphaGo 的兴起,除了在游戏AI领域,深度学习在计算机视觉领域,机器翻译和自然语言处理领域也有着巨大的用武之地。在 2016 年,随着深度学习的进一步发展,seq2seq 的训练模式和翻译模式已经开始进入人们的视野。除此之外,在端到端的训练方法中,除了需要海量的业务数据之外,在网络结构中加入一些重要的模块也是非常必要的。在此情形下,基于循环神经网咯(Recurrent Neural Network)的注意力机制(Attention Mechanism)进入了人们的视野。除了之前提到的机器翻译和自然语言处理领域之外,计算机视觉中的注意力机制也是十分有趣的,本文将会简要介绍一下计算机视觉领域中的注意力方法。在此事先声明一下,笔者并不是从事这几个领域的,可能在撰写文章的过程中会有些理解不到位的地方,请各位读者指出其中的不足。

LSTM_1

注意力机制

顾名思义,注意力机制是本质上是为了模仿人类观察物品的方式。通常来说,人们在看一张图片的时候,除了从整体把握一幅图片之外,也会更加关注图片的某个局部信息,例如局部桌子的位置,商品的种类等等。在翻译领域,每次人们翻译一段话的时候,通常都是从句子入手,但是在阅读整个句子的时候,肯定就需要关注词语本身的信息,以及词语前后关系的信息和上下文的信息。在自然语言处理方向,如果要进行情感分类的话,在某个句子里面,肯定会涉及到表达情感的词语,包括但不限于“高兴”,“沮丧”,“开心”等关键词。而这些句子里面的其他词语,则是上下文的关系,并不是它们没有用,而是它们所起的作用没有那些表达情感的关键词大。

在以上描述下,注意力机制其实包含两个部分

  1. 注意力机制需要决定整段输入的哪个部分需要更加关注;
  2. 从关键的部分进行特征提取,得到重要的信息。

通常来说,在机器翻译或者自然语言处理领域,人们阅读和理解一句话或者一段话其实是有着一定的先后顺序的,并且按照语言学的语法规则来进行阅读理解。在图片分类领域,人们看一幅图也是按照先整体再局部,或者先局部再整体来看的。再看局部的时候,尤其是手写的手机号,门牌号等信息,都是有先后顺序的。为了模拟人脑的思维方式和理解模式,循环神经网络(RNN)在处理这种具有明显先后顺序的问题上有着独特的优势,因此,Attention 机制通常都会应用在循环神经网络上面。

虽然,按照上面的描述,机器翻译,自然语言处理,计算机视觉领域的注意力机制差不多,但是其实仔细推敲起来,这三者的注意力机制是有明显区别的。

  1. 在机器翻译领域,翻译人员需要把已有的一句话翻译成另外一种语言的一句话。例如把一句话从英文翻译到中文,把中文翻译到法语。在这种情况下,输入语言和输出语言的词语之间的先后顺序其实是相对固定的,是具有一定的语法规则的;
  2. 在视频分类或者情感识别领域,视频的先后顺序是由时间戳和相应的片段组成的,输入的就是一段视频里面的关键片段,也就是一系列具有先后顺序的图片的组合。NLP 中的情感识别问题也是一样的,语言本身就具有先后顺序的特点;
  3. 图像识别,物体检测领域与前面两个有本质的不同。因为物体检测其实是在一幅图里面挖掘出必要的物体结构或者位置信息,在这种情况下,它的输入就是一幅图片,并没有非常明显的先后顺序,而且从人脑的角度来看,由于个体的差异性,很难找到一个通用的观察图片的方法。由于每个人都有着自己观察的先后顺序,因此很难统一成一个整体。

在这种情况下,机器翻译和自然语言处理领域使用基于 RNN 的 Attention 机制就变得相对自然,而计算机视觉领域领域则需要必要的改造才能够使用 Attention 机制。

LSTM_3

基于 RNN 的注意力机制

通常来说,RNN 等深度神经网络可以进行端到端的训练和预测,在机器翻译领域和或者文本识别领域有着独特的优势。对于端到端的 RNN 来说,有一个更简洁的名字叫做 sequence to sequence,简写就是 seq2seq。顾名思义,输入层是一句话,输出层是另外一句话,中间层包括编码和解码两个步骤。

而基于 RNN 的注意力机制指的是,对于 seq2seq 的诸多问题,在输入层和输出层之间,也就是词语(Items)与词语之间,存在着某种隐含的联系。例如:“中国” -> “China”,“Excellent” -> “优秀的”。在这种情况下,每次进行机器翻译的时候,模型需要了解当前更加关注某个词语或者某几个词语,只有这样才能够在整句话中进行必要的提炼。在这些初步的思考下,基于 RNN 的 Attention 机制就是:

  1. 建立一个编码(Encoder)和解码(Decoder)的非线性模型,神经网络的参数足够多,能够存储足够的信息;
  2. 除了关注句子的整体信息之外,每次翻译下一个词语的时候,需要对不同的词语赋予不同的权重,在这种情况下,再解码的时候,就可以同时考虑到整体的信息和局部的信息。

LSTM_4

注意力机制的种类

从初步的调研情况来看,注意力机制有两种方法,一种是基于强化学习(Reinforcement Learning)来做的,另外一种是基于梯度下降(Gradient Decent)来做的。强化学习的机制是通过收益函数(Reward)来激励,让模型更加关注到某个局部的细节。梯度下降法是通过目标函数以及相应的优化函数来做的。无论是 NLP 还是 CV 领域,都可以考虑这些方法来添加注意力机制。

LSTM_5

计算机视觉领域的 Attention 部分论文整理

下面将会简单的介绍几篇近期阅读的计算机视觉领域的关于注意力机制的文章。

Look Closer to See Better:Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition

在图像识别领域,通常都会遇到给图片中的鸟类进行分类,包括种类的识别,属性的识别等内容。为了区分不同的鸟,除了从整体来对图片把握之外,更加关注的是一个局部的信息,也就是鸟的样子,包括头部,身体,脚,颜色等内容。至于周边信息,例如花花草草之类的,则显得没有那么重要,它们只能作为一些参照物。因为不同的鸟类会停留在树木上,草地上,关注树木和草地的信息对鸟类的识别并不能够起到至关重要的作用。所以,在图像识别领域引入注意力机制就是一个非常关键的技术,让深度学习模型更加关注某个局部的信息。

RA_CNN_1

在这篇文章里面,作者们提出了一个基于 CNN 的注意力机制,叫做 recurrent attention convolutional neural network(RA-CNN),该模型递归地分析局部信息,从局部的信息中提取必要的特征。同时,在 RA-CNN 中的子网络(sub-network)中存在分类结构,也就是说从不同区域的图片里面,都能够得到一个对鸟类种类划分的概率。除此之外,还引入了 attention 机制,让整个网络结构不仅关注整体信息,还关注局部信息,也就是所谓的 Attention Proposal Sub-Network(APN)。这个 APN 结构是从整个图片(full-image)出发,迭代式地生成子区域,并且对这些子区域进行必要的预测,并将子区域所得到的预测结果进行必要的整合,从而得到整张图片的分类预测概率。

RA_CNN_2

RA-CNN 的特点是进行一个端到端的优化,并不需要提前标注 box,区域等信息就能够进行鸟类的识别和图像种类的划分。在数据集上面,该论文不仅在鸟类数据集(CUB Birds)上面进行了实验,也在狗类识别(Stanford Dogs)和车辆识别(Stanford Cars)上进行了实验,并且都取得了不错的效果。

RA_CNN_4

从深度学习的网络结构来看,RA-CNN 的输入时是整幅图片(Full Image),输出的时候就是分类的概率。而提取图片特征的方法通常来说都是使用卷积神经网络(CNN)的结构,然后把 Attention 机制加入到整个网络结构中。从下图来看,一开始,整幅图片从上方输入,然后判断出一个分类概率;然后中间层输出一个坐标值和尺寸大小,其中坐标值表示的是子图的中心点,尺寸大小表示子图的尺寸。在这种基础上,下一幅子图就是从坐标值和尺寸大小得到的图片,第二个网络就是在这种基础上构建的;再迭代持续放大图片,从而不停地聚焦在图片中的某些关键位置。不同尺寸的图片都能够输出不同的分类概率,再将其分类概率进行必要的融合,最终的到对整幅图片的鸟类识别概率。

因此,在整篇论文中,有几个关键点需要注意:

  1. 分类概率的计算,也就是最终的 loss 函数的设计;
  2. 从上一幅图片到下一幅图片的坐标值和尺寸大小。

只要获得了这些指标,就可以把整个 RA-CNN 网络搭建起来。

大体来说,第一步就是给定了一幅输入图片 X, 需要提取它的特征,可以记录为 W_{c}*X,这里的 * 指的是卷积等各种各样的操作。所以得到的概率分布情况其实就是 p(X) = f(W_{c}*X)f 指的是从 CNN 的特征层到全连接层的函数,外层使用了 Softmax 激活函数来计算鸟类的概率。

第二步就是计算下一个 box 的坐标 (t_{x}, t_{y}) 和尺寸大小 t_{\ell},其中 t_{x}, t_{y} 分别指的是横纵坐标,正方形的边长其实是 2*t_{\ell}。用数学公式来记录这个流程就是 [t_{x}, t_{y}, t_{\ell}] = g(W_{c}*X)。在坐标值的基础上,我们可以得到以下四个值,分别表示 x, y 两个坐标轴的上下界:

t_{x(t\ell)} = t_{x} - t_{\ell}, t_{x(br)} = t_{x} + t_{\ell},

t_{y(t\ell)} = t_{y} - t_{\ell}, t_{y(br)} = t_{y} + t_{\ell}.

局部注意力和放大策略(Attention Localization and Amplification)指的是:从上面的方法中拿到坐标值和尺寸,然后把图像进行必要的放大。为了提炼局部的信息,其实就需要在整张图片 X 的基础上加上一个面具(Mask)。所谓面具,指的是在原始图片的基础上进行点乘 0 或者 1 的操作,把一些数据丢失掉,把一些数据留下。在图片领域,就是把周边的信息丢掉,把鸟的信息留下。但是,有的时候,如果直接进行 0 或者 1 的硬编码,会显得网络结构不够连续或者光滑,因此就有其他的替代函数。

在激活函数里面,逻辑回归函数(Logistic Regression)是很常见的。其实通过逻辑回归函数,我们可以构造出近似的阶梯函数或者面具函数。

sigmoid_1

对于逻辑回归函数 \sigma(x) = 1/(1+e^{-kx}) 而言,当 k 足够大的时候,\sigma(x) \approx 1x \geq 0\sigma(x) \approx 0x<0。此时的逻辑回归函数近似于一个阶梯函数。如果假设 x_{0}<x_{1},那么 \sigma(x-x_{0}) - \sigma(x-x_{1}) 就是光滑一点的阶梯函数,\sigma(x-x_{0}) - \sigma(x-x_{1}) \approx 0x < x_{0} \text{ or } x > x_{1}\sigma(x-x_{0}) - \sigma(x-x_{1}) \approx 1x_{0}\leq x\leq x_{1}

因此,基于以上的分析和假设,我们可以构造如下的函数:X^{attr} = X \odot M(t_{x}, t_{y}, t_{\ell}), 其中,X^{attr} 表示图片需要关注的区域,M(\cdot) 函数就是 M(t_{x}, t_{y}, t_{\ell}) = [\sigma(x-t_{x(t\ell)}) - \sigma(x-t_{x(br)})]\cdot[\sigma(y-t_{y(t\ell)}) - \sigma(y-t_{y(br)})], 这里的 \sigma 函数对应了一个足够大的 k 值。

当然,从一张完整的图片到小图片,在实际操作的时候,需要把小图片继续放大,在放大的过程中,可以考虑使用双线性插值算法来扩大。也就是说:

X_{(i,j)}^{amp} = \sum_{\alpha,\beta=0}^{1}|1-\alpha-\{i/\lambda\}|\cdot|1-\beta-\{j/\lambda\}|\cdot X_{(m,n)}^{att},

其中 m = [i/\lambda] + \alpha, n = [j/\lambda] + \beta\lambda 表示上采样因子,[\cdot], \{\cdot\} 分别表示一个实数的正数部分和小数部分。

在分类(Classification)和排序(Ranking)部分,RA-CNN 也有着自己的方法论。在损失函数(Loss Function)里面有两个重要的部分,第一个部分就是三幅图片的 LOSS 函数相加,也就是所谓的 classification loss,Y^{(s)} 表示预测类别的概率,Y 表示真实的类别。除此之外,另外一个部分就是排序的部分,L_{rank}(p_{t}^{(s)}, p_{t}^{(s+1)}) = \max\{0,p_{t}^{(s)}-p_{t+1}^{(s+1)}+margin\}, 其中 p^{(s)} 表示在第 s 个尺寸下所得到的类别 t 的预测概率,并且最大值函数强制了该深度学习模型在训练中可以保证 p_{t}^{(s+1)} > p_{t}^{(s)} + margin,也就是说,局部预测的概率值应该高于整体的概率值。

L(X) = \sum_{s=1}^{3}\{L_{cls}(Y^{(s)},Y^{*})\} + \sum_{s=1}^{2}\{L_{rank}(p_{t}^{(s)},p_{t}^{(s+1)})\}.

RA_CNN_3

在这种 Attention 机制下,可以使用训练好的 conv5_4 或者 VGG-19 来进行特征的提取。在图像领域,location 的位置是需要通过训练而得到的,因为每张图片的鸟的位置都有所不同。进一步通过数学计算可以得到,t_{\ell} 会随着网络而变得越来越小,也就是一个层次递进的关系,越来越关注到局部信息的提取。简单来看,

\frac{\partial L_{rank}}{\partial t_{x}} \propto D_{top} \odot \frac{\partial M(t_{x},t_{y},t_{\ell})}{\partial t_{x}},

这里的 \odot 表示元素的点乘,D_{top} 表示之前的网络所得到的导数。

x\rightarrow t_{x(t\ell)}\frac{\partial M}{\partial t_{x}}<0;

x \rightarrow t_{x(br)}\frac{\partial M}{\partial t_{x}}>0;

其余情况,\frac{\partial M}{\partial t_{x}}=0.

y\rightarrow t_{y(t\ell)}\frac{\partial M}{\partial t_{y}}<0;

y \rightarrow t_{y(br)}\frac{\partial M}{\partial t_{y}}>0;

其余情况,\frac{\partial M}{\partial t_{y}}=0.

x \rightarrow t_{x(t\ell)}\text{ or } x \rightarrow t_{x(br)}\text{ or } y \rightarrow t_{y(t\ell)}\text{ or } y \rightarrow t_{y(br)}, \frac{\partial M}{\partial t_{\ell}}>0;

其余情况,\frac{\partial M}{\partial t_{\ell}}<0.

因此,t_{\ell} 在迭代的过程中会越来越小,也就是说关注的区域会越来越集中。

RA-CNN 的实验效果如下:

RA_CNN_5.png

 

Multiple Granularity Descriptors for Fine-grained Categorization

这篇文中同样做了鸟类的分类工作,与 RA-CNN 不同之处在于它使用了层次的结构,因为鸟类的区分是按照一定的层次关系来进行的,粗糙来看,有科 -> 属 -> 种三个层次结构。

MC_CNN_1

因此,在设计网络结构的过程中,需要有并行的网络结构,分别对应科,属,种三个层次。从前往后的顺序是检测网络(Detection Network),区域发现(Region Discovery),描述网络(Description Network)。并行的结构是 Family-grained CNN + Family-grained Descriptor,Genus-grained CNN + Genus-grained Descriptor,Species-grained CNN + Species-grained Descriptor。而在区域发现的地方,作者使用了 energy 的思想,让神经网络分别聚焦在图片中的不同部分,最终的到鸟类的预测结果。

MC_CNN_2MC_CNN_3

Recurrent Models of Visual Attention

在计算机视觉中引入注意力机制,DeepMind 的这篇文章 recurrent models of visual attention 发表于 2014 年。在这篇文章中,作者使用了基于强化学习方法的注意力机制,并且使用收益函数来进行模型的训练。从网络结构来看,不仅从整体来观察图片,也从局部来提取必要的信息。

DeepMind_1

DeepMind_2DeepMind_3

整体来看,其网络结构是 RNN,上一个阶段得到的信息和坐标会被传递到下一个阶段。这个网络只在最后一步进行分类的概率判断,这是与 RA-CNN 不同之处。这是为了模拟人类看物品的方式,人类并非会一直把注意力放在整张图片上,而是按照某种潜在的顺序对图像进行扫描。Recurrent Models of Visual Attention 本质上是把图片按照某种时间序列的形式进行输入,一次处理原始图片的一部分信息,并且在处理信息的过程中,需要根据过去的信息和任务选择下一个合适的位置进行处理。这样就可以不需要进行事先的位置标记和物品定位了。

DeepMind_4

正如上图所示,enc 指的是对图片进行编码,r_{i}^{(1)} 表示解码的过程,x_{i} 表示图片的一个子区域。而 y_{s} 表示对图片的预测概率或者预测标签。

 

Multiple Object Recognition with Visual Attention

这篇文章同样是 DeepMind 的论文,与 Recurrent Models of Visual Attention 不同之处在于,它是一个两层的 RNN 结构,并且在最上层把原始图片进行输入。其中 enc 是编码网络,r^{(1)}_{i} 是解码网络,r_{i}^{(2)} 是注意力网络,输出概率在解码网络的最后一个单元输出。

deep_recurrent_attention_model_1

在门牌识别里面,该网络是按照从左到右的顺序来进行图片扫描的,这与人类识别物品的方式极其相似。除了门牌识别之外,该论文也对手写字体进行了识别,同样取得了不错的效果。

deep_recurrent_attention_model_3deep_recurrent_attention_model_2

实验效果如下:

deep_recurrent_attention_model_4.png

总结

本篇 Blog 初步介绍了计算机视觉中的 Attention 机制,除了这些方法之外,应该还有一些更巧妙的方法,希望各位读者多多指教。

参考文献

  1. Look Closer to See Better:Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition,CVPR,2017.
  2. Recurrent Models of Visual Attention,NIPS,2014
  3. GitHub 代码:Recurrent-Attention-CNN,https://github.com/Jianlong-Fu/Recurrent-Attention-CNN
  4. Multiple Granularity Descriptors for Fine-grained Categorization,ICCV,2015
  5. Multiple Object Recognition with Visual Attention,ICRL,2015
  6. Understanding LSTM Networks,Colah’s Blog,2015,http://colah.github.io/posts/2015-08-Understanding-LSTMs/
  7. Survey on the attention based RNN model and its applications in computer vision,2016

 

时间序列的聚类

在机器学习领域,聚类问题一直是一个非常常见的问题。无论是在传统的机器学习(Machine Learning)领域,还是自然语言处理(Natural Language Processing)领域,都可以用聚类算法做很多的事情。例如在数据分析领域,我们可以把某个物品用特征来描述出来,例如该房子的面积,价格,朝向等内容,然后使用聚类算法来把相似的房子聚集到一起;在自然语言处理领域,通常都会寻找一些相似的新闻或者把相似的文本信息聚集到一起,在这种情况下,可以用 Word2Vec 把自然语言处理成向量特征,然后使用 KMeans 等机器学习算法来作聚类。除此之外,另外一种做法是使用 Jaccard 相似度来计算两个文本内容之间的相似性,然后使用层次聚类(Hierarchical Clustering)的方法来作聚类。

word2vec1

本文将会从常见的聚类算法出发,然后介绍时间序列聚类的常见算法。

机器学习的聚类算法

KMeans — 基于距离的机器学习聚类算法

KMeans 算法的目的是把欧氏空间 \mathbb{R}^{m} 中的 n 个节点,基于它们之间的距离公式,把它们划分成 K 个类别,其中类别 K 的个数是需要在执行算法之前人为设定的。

kmeans1

从数学语言上来说,假设已知的欧式空间点集为 \{x_{1},\cdots,x_{n}\},事先设定的类别个数是 K,当然 K\leq n 是必须要满足的,因为类别的数目不能够多于点集的元素个数。算法的目标是寻找到合适的集合 \{S_{i}\}_{1\leq i\leq K} 使得 argmin_{S_{i}}\sum_{x\in S_{i}}||x-\mu_{i}||^{2} 达到最小,其中 \mu_{i} 表示集合 S_{i} 中的所有点的均值。

上面的 ||\cdot|| 表示欧式空间的欧几里得距离,在这种情况下,除了使用 L^{2} 范数之外,还可以使用 L^{1} 范数和其余的 L^{p},p\geq 1 范数。只要该范数满足距离的三个性质即可,也就是非负数,对称,三角不等式。

层次聚类 — 基于相似性的机器学习聚类算法

层次聚类通常来说有两种方法,一种是凝聚,另外一种是分裂。

hierarchicalclustering1

所谓凝聚,其大体思想就是在一开始的时候,把点集集合中的每个元素都当做一类,然后计算每两个类之前的相似度,也就是元素与元素之间的距离;然后计算集合与集合之前的距离,把相似的集合放在一起,不相似的集合就不需要合并;不停地重复以上操作,直到达到某个限制条件或者不能够继续合并集合为止。

所谓分裂,正好与聚合方法相反。其大体思想就是在刚开始的时候把所有元素都放在一类里面,然后计算两个元素之间的相似性,把不相似元素或者集合进行划分,直到达到某个限制条件或者不能够继续分裂集合为止。

在层次聚类里面,相似度的计算函数就是关键所在。在这种情况下,可以设置两个元素之间的距离公式,例如欧氏空间中两个点的欧式距离。在这种情况下,距离越小表示两者之间越相似,距离越大则表示两者之间越不相似。除此之外,还可以设置两个元素之间的相似度。例如两个集合中的公共元素的个数就可以作为这两个集合之间的相似性。在文本里面,通常可以计算句子和句子的相似度,简单来看就是计算两个句子之间的公共词语的个数。

时间序列的聚类算法

通过以上的描述,如果要做时间序列的聚类,通常来说也有多种方法来做,可以使用基于距离的聚类算法 KMeans,也可以使用基于相似度计算的层次聚类算法。

时间序列的特征提取

之前写过很多时间序列特征提取的方法,无论是常见的时间序列特征,例如最大值,最小值,均值,中位数,方差,值域等内容之外。还可以计算时间序列的熵以及分桶的情况,其分桶的熵指的是把时间序列的值域进行切分,就像 Lebesgue 积分一样,查看落入那些等分桶的时间序列的概率分布情况,就可以进行时间序列的分类。除了 Binned Entropy 之外,还有 Sample Entropy 等各种各样的特征。除了时域特征之外,也可以对时间序列的频域做特征,例如小波分析,傅里叶分析等等。因此,在这种情况下,其实只要做好了时间序列的特征,使用 KMeans 算法就可以得到时间序列的聚类效果,也就是把相似的曲线放在一起。参考文章:时间序列的表示与信息提取。

在提取时间序列的特征之前,通常可以对时间序列进行基线的提取,把时间序列分成基线和误差项。而基线提取的最简单方法就是进行移动平均算法的拟合过程,在这种情况下,可以把原始的时间序列 \{x_{1},\cdots,x_{n}\} 分成两个部分 \{baseline_{1},\cdots,baseline_{n}\}\{residual_{1},\cdots,residual_{n}\}。i.e. x_{i} = baseline_{i} + residual_{i}。有的时候,提取完时间序列的基线之后,其实对时间序列的基线做特征,有的时候分类效果会优于对原始的时间序列做特征。参考文章:两篇关于时间序列的论文。

时间序列的相似度计算

如果要计算时间序列的相似度,通常来说除了欧几里得距离等 L^{p} 距离之外,还可以使用 DTW 等方法。在这种情况下,DTW 是基于动态规划算法来做的,基本想法是根据动态规划原理,来进行时间序列的“扭曲”,从而把时间序列进行必要的错位,计算出最合适的距离。一个简单的例子就是把 y=\sin(x)y=\cos(x) 进行必要的横坐标平移,计算出两条时间序列的最合适距离。但是,从 DTW 的算法描述来看,它的算法复杂度是相对高的,是 O(n^{2}) 量级的,其中 n 表示时间序列的长度。参考文章:时间序列的搜索。

dtw1

如果不考虑时间序列的“扭曲”的话,也可以直接使用欧氏距离,无论是 L^{1}, L^{2} 还是 L^{p} 都有它的用武之地。除了距离公式之外,也可以考虑两条时间序列之间的 Pearson 系数,如果两条时间序列相似的话,那么它们之间的 Pearson 系数接近于 1;如果它们之间是负相关的,那么它们之间的 Pearson 系数接近于 -1;如果它们之间没有相关性,Pearson 系数接近于0。除了 Pearson 系数之外,也可以考虑它们之间的线性相关性,毕竟线性相关性与 Pearson 系数是等价的。参考文章:时间序列的相似性。

除此之外,我们也可以用 Auto Encoder 等自编码器技术对时间序列进行特征的编码,也就是说该自编码器的输入层和输出层是恒等的,中间层的神经元个数少于输入层和输出层。在这种情况下,是可以做到对时间序列进行特征的压缩和构造的。除了 Auto Encoder 等无监督方法之外,如果使用其他有监督的神经网络结构的话,例如前馈神经网络,循环神经网络,卷积神经网络等网络结构,可以把归一化之后的时间序列当做输入层,输出层就是时间序列的各种标签,无论是该时间序列的形状种类还是时间序列的异常/正常标签。当该神经网络训练好了之后,中间层的输出都可以作为 Time Series To Vector 的一种模式。i.e. 也就是把时间序列压缩成一个更短一点的向量,然后基于 COSINE 相似度等方法来计算原始时间序列的相似度。参考文章:基于自编码器的时间序列异常检测算法基于前馈神经网络的时间序列异常检测算法。

总结

如果想对时间序列进行聚类,其方法是非常多的。无论是时间序列的特征构造,还是时间序列的相似度方法,都是需要基于一些人工经验来做的。如果使用深度学习的方法的话,要么就提供大量的标签数据;要么就只能够使用一些无监督的编码器的方法了。本文目前初步介绍了一些时间序列的聚类算法,后续将会基于笔者的学习情况来做进一步的撰写工作。

参考文献

  1. 聚类分析:https://en.wikipedia.org/wiki/Cluster_analysis
  2. Dynamic Time Warping:https://en.wikipedia.org/wiki/Dynamic_time_warping
  3. Pearson Coefficient:https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
  4. Auto Encoder:https://en.wikipedia.org/wiki/Autoencoder
  5. Word2Vec:https://en.wikipedia.org/wiki/Word2vec,https://samyzaf.com/ML/nlp/nlp.html