Category Archives: Mathematics

Riemann Zeta 函数(二)

在上一篇文章里面,我们已经给出了 Riemann Zeta 函数的定义,

\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.

其定义域是 [1,\infty)\subseteq\mathbb{R}. 根据级数与定积分的等价关系可以得到:

  1. s = 1 时,\zeta(1) = \infty;
  2. s>1 时,\zeta(s)<\infty.

本文将会重点讲两个内容:

  1. 如何把 Riemann Zeta 函数从 [1,\infty)\subseteq \mathbb{R} 上延拓到 \{s\in \mathbb{C}: \Re(s)>0\} 上;
  2. Riemann Zeta 函数在 \{s\in\mathbb{C}: \Re(s)\geq 1\} 上没有零点。

Riemann Zeta 函数定义域的延拓

如果想把 Riemann Zeta 函数的定义域从 [1,\infty)\subseteq \mathbb{R} 延拓到更大的区域 \{s\in\mathbb{C}:\Re(s)>0\} 上,就需要给出 Riemann Zeta 函数在 \{s\in \mathbb{C}: \Re(s)>0\} 上的定义。而且在原始的定义域 [1,\infty)\subseteq\mathbb{R} 上面,新的函数的取值必须与原函数的取值保持一致。

首先,我们将会在 [1,\infty)\subseteq \mathbb{R} 上面证明如下恒等式:

\zeta(s) = \frac{s}{s-1} - s\int_{1}^{\infty}\frac{\{x\}}{x^{s+1}}dx.

证明:当 s=1 时,上述等式显然成立,两侧都是 \infty.

\frac{s}{s-1}-s\int_{1}^{\infty}\frac{\{x\}}{x^{s+1}}dx

= \frac{s}{s-1} - s\sum_{n=1}^{\infty}\int_{n}^{n+1}\frac{\{x\}}{x^{s+1}}dx 

= \frac{s}{s-1} - s\sum_{n=1}^{\infty}\int_{n}^{n+1}\frac{x-n}{x^{s+1}}dx 

= \frac{s}{s-1} - s\sum_{n=1}^{\infty}\bigg(\int_{n}^{n+1}\frac{1}{x^{s}}dx - \int_{n}^{n+1}\frac{n}{x^{s+1}}dx\bigg)

= \frac{s}{s-1} - s\int_{1}^{\infty}\frac{1}{x^{s}}dx + \sum_{n=1}^{\infty}n\cdot\int_{n}^{n+1}\frac{s}{x^{s+1}}dx

= \sum_{n=1}^{\infty}n\cdot\bigg(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\bigg)

= \sum_{n=1}^{\infty}\bigg(\frac{1}{n^{s-1}}-\frac{1}{(n+1)^{s-1}} + \frac{1}{(n+1)^{s}}\bigg)

= \sum_{n=1}^{\infty}\frac{1}{n^{s}}.

从右式的表达式

\frac{s}{s-1} - s \int_{1}^{\infty}\frac{\{x\}}{x^{s+1}}dx

可以看出 \zeta(s) 可以延拓到 \{s \in\mathbb{C}:\Re(s)>0\} 上。而且右侧的函数在 \{s\in\mathbb{C}:\Re(s)>0,s\neq 1\} 是解析的,并且 s=1 是该函数的一个极点。进一步的分析可以得到,我们得到一个关于 (s-1)\zeta(s) 的解析函数,而且 \lim_{s\rightarrow 1}(s-1)\zeta(s)=1. 综上所述:

  1. Riemann Zeta 函数可以延拓到 \{s\in\mathbb{C}:\Re(s)>0\} 上;
  2. Riemann Zeta 函数在 \{s\in\mathbb{C}:\Re(s)>0, s\neq 1\} 上是解析的;s=1 是 Riemann Zeta 函数的极点。

 

Riemann Zeta 函数的非零区域

著名的 Riemann 猜想说的是 \zeta(s) 函数的所有非平凡零点都在直线 \{s\in\mathbb{C}:\Re(s)=1/2\} 上。因此,数学家首先要找出的就是 Riemann Zeta 函数的非零区域。而本篇文章将会证明 Riemann Zeta 函数在 \{s\in\mathbb{C}:\Re(s)\geq 1\} 上面没有零点。

\Re(s)>1 区域

首先,我们要证明当 \Re(s)>1 时,\zeta(s)\neq 0.

在这里,就需要使用一个重要的恒等式:当 \Re(s)>1 时,

\zeta(s) =\sum_{n=1}^{\infty}\frac{1}{n^{s}}

= \prod_{p}\bigg(1+\frac{1}{p^{s}}+\frac{1}{p^{2s}}+\cdots\bigg)

= \prod_{n=1}^{\infty}\bigg(1-\frac{1}{p_{n}^{s}}\bigg)^{-1},

其中这里的 p 表示所有的素数相乘,而 p_{n} 表示第 n 个素数。

下面我们证明:

\bigg|1-\frac{1}{p_{n}^{s}}\bigg|^{-1}\geq 1-\frac{1}{p_{n}^{\sigma}-1} .

事实上,令 s = \sigma + i t,,当 \sigma=\Re(s)>1 时,我们有

\bigg|1-\frac{1}{p_{n}^{s}}\bigg|^{-1} = \bigg(1+\frac{1}{p_{n}^{s}}+\frac{1}{p_{n}^{2s}}+\cdots\bigg)

\geq 1-\frac{1}{|p_{n}^{s}|}- \frac{1}{|p_{n}^{2s}|} -\cdots

= 1- \frac{1}{p_{n}^{\sigma}} - \frac{1}{p_{n}^{2\sigma}} -\cdots

= 1- \frac{1}{p_{n}^{\sigma}-1}.

因此,

|\zeta(s)| \geq \prod_{n=1}^{\infty}\bigg|1-\frac{1}{p_{n}^{s}}\bigg|^{-1} \geq\prod_{n=1}^{\infty}\bigg(1-\frac{1}{p_{n}^{\sigma}-1}\bigg).

同时,

\lim_{n\rightarrow \infty} \bigg(1- \frac{1}{p_{n}^{\sigma}-1}\bigg) = 1 ,

1-\frac{1}{p_{n+1}^{\sigma}-1} \geq 1- \frac{1}{p_{n}^{\sigma}-1} ,

\sum_{n=1}^{\infty}\frac{1}{p_{n}^{\sigma}}\leq \sum_{n=1}^{\infty}\frac{1}{n^{\sigma}}<\infty when \sigma>1.

所以,当 \Re(s)>1 时,\zeta(s) \neq 0.

\Re(s) =1 直线

Claim 1. 下面我们将会证明恒等式:对于 \sigma >1, \text{ } t\in\mathbb{R},

\Re(\ln\zeta(\sigma + it)) = \sum_{n=2}^{\infty}\frac{\Lambda(n)}{n^{\sigma}\ln(n)}\cos(t\ln(n)) ,

其中当 n 形如 p^{\alpha}, p 是素数,\alpha \geq 1. \Lambda(n) = \ln(p). 而对于其余的 n, \Lambda(n)=0.

事实上,根据 Euler 公式,

\zeta(s) = \prod_{p}\bigg(1-\frac{1}{p^{s}}\bigg)^{-1}.

s = \sigma + it, 可以得到

\ln\zeta(s) = -\sum_{p}\ln\bigg(1-\frac{1}{p^{s}}\bigg)

= \sum_{p}\sum_{\alpha=1}^{\infty}\frac{1}{\alpha p^{\alpha s}}

= \sum_{p}\sum_{\alpha=1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cdot p^{-i\alpha t}

= \sum_{p}\sum_{\alpha = 1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cdot e^{-i\alpha t \ln p}

进一步,

\Re(\ln\zeta(s)) = \sum_{p}\sum_{\alpha =1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cos(\alpha t \ln p)

并且右侧等于

RHS = \sum_{n=2}^{\infty}\frac{\Lambda(n)}{n^{\sigma}\ln(n)}\cos(t\ln(n))

= \sum_{p}\sum_{\alpha = 1}^{\infty} \frac{\ln(p)}{p^{\alpha\sigma}\ln(p^{\alpha})}\cos(t\ln(p^{\alpha}))

= \sum_{p}\sum_{\alpha = 1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cos(\alpha t\ln p).

所以,恒等式成立,Claim 1 证明完毕。

Claim 2.

\Re(3\ln\zeta(\sigma) + 4\ln\zeta(\sigma+it) + \ln\zeta(\sigma+2it))\geq 0,

其中 \sigma>1, t\in\mathbb{R}. 换句话说

|\zeta(\sigma)^{3}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|\geq 1.

事实上,

从三角函数的性质可以得到:

3+4\cos(\theta)+\cos(2\theta) = 3 + 4\cos(\theta)+2\cos^{2}(\theta)-1

= 2(\cos(\theta)-1)^{2}\geq 0,

所以,从 Claim 1 可以得到

\Re(3\ln\zeta(\sigma) + 4\ln\zeta(\sigma+it) + \ln\zeta(\sigma+2it))

= \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{\sigma}\ln(n)} \cdot ( 3 + 4\cos(t\ln(n)) + \cos(2t\ln(n))) \geq 0.

进一步地,使用 \Re(\ln(z)) = \ln(|z|) 可以得到

0\leq 3\ln|\zeta(\sigma)| + 4\ln|\zeta(\sigma+it)| + \ln|\zeta(\sigma+2it)|

= \ln|\zeta(\sigma)^{3}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|,

可以推导出 |\zeta(\sigma)^{3}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|\geq 1. 因此 Claim 2 证明完毕。

Claim 3. \zeta(1+it)\neq 0 对于所有的 \{t\in\mathbb{R}: t\neq 0\} 成立。

反证法:假设 \zeta(s)s=\sigma + it (t\neq 0) 存在阶数为 m 的零点。也就是说:

\lim_{\sigma\rightarrow 1^{+}} \frac{\zeta(\sigma+it)}{(\sigma+it-1)^{m}}=c\neq 0, 其中 m\geq 1.

从 Riemann Zeta 函数的延拓可以知道,\lim_{\sigma\rightarrow 1^{+}}(\sigma -1)\zeta(\sigma) = 1. 并且 \zeta(s)\{s\in\mathbb{C}:\Re(s)>0, s\neq 1\} 上是解析函数。

从 Claim 2 可以得到:

|(\sigma-1)^{3}\zeta(\sigma)^{3}(\sigma+it-1)^{-4m}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|

\geq |\sigma-1|^{3}|\sigma-1+it|^{-4m}

\geq |\sigma-1|^{3}\cdot |\sigma-1|^{-4m}

= \frac{1}{|\sigma-1|^{4m-3}}.

\sigma\rightarrow 1^{+}, 可以得到左侧趋近于一个有限的值,但是右侧趋近于无穷,所以得到矛盾。也就是说当 t\neq 0 时, \zeta(1+it)\neq 0 成立。

根据之前的知识,s= 1\zeta(s) 的极点,所以我们得到了本篇文章的主要结论:\zeta(s)\{s\in\mathbb{C}:\Re(s)\geq 1\} 上面没有零点。

 

总结

本篇文章从 Riemann Zeta 函数的延拓开始,证明了 Riemann Zeta 函数在 \{s\in\mathbb{C}:\Re(s)\geq 1\} 上没有零点。在下一篇文章中,笔者将会证明在 \Re(s)=1 附近一个“狭长”的区域上,Riemann Zeta 函数没有零点。

 

Advertisements

从调和级数到 RIEMANN ZETA 函数(一)

Riemann Zeta 函数

Riemann Zeta 函数(Riemann zeta function),\zeta(s),是一个关于复数 s 的方程。在复平面上,当复数 s 的实数部分 \sigma=\Re s >1 时,\zeta(s) 就是如下的级数形式:

\zeta(s) = \sum_{n=1}^{\infty}\frac{1}{n^{s}}.

调和级数的概念与性质

既然提到了级数,首先让我们来回顾一下级数的定义是什么?

级数的定义:在数学中,一个有穷或者无穷的序列 (x_{0},x_{1},x_{2},...) 的形式和 S = x_{0}+x_{1}+x_{2}+... 称为级数,里面的每一项都称为级数的通项。

级数收敛的定义:令 S_{n}=x_{0}+...+x_{n},如果存在有限的 S 使得 \lim_{n\rightarrow \infty}S_{n}=S,那么就称该级数收敛。否则,该级数就称为发散级数。

然后下面我们来研究一下调和级数的基本性质。调和级数的表达式写出来十分简单,那就是 Riemann Zeta 函数在 s=1 的取值,i.e.

\zeta(1) = \sum_{n=1}^{+\infty}\frac{1}{n}.

提到级数的收敛或发散,就必须要提到关于级数收敛的等价定理(Cauchy 判别法),那就是:级数 S_{n} 收敛当且仅当对任意的 \epsilon>0,存在 N 使得对于任意的 m, n>N 都有 |S_{m}-S_{n}|<\epsilon.

既然是等价定理,那么就可以使用 Cauchy 判别法来判断调和级数是否收敛。

Method 1.

S_{n}=\sum_{k=1}^{n}\frac{1}{k},

直接通过计算得到

|S_{2n}-S_{n}|=\frac{1}{n+1}+...+\frac{1}{2n}>\frac{1}{2n}+...+\frac{1}{2n}=\frac{1}{2},

说明该级数是不收敛的,也就是调和级数是发散的。

除了基于 Cauchy 收敛准则的证明之外,能否写出判断调和级数发散的其他方法呢?答案是肯定的。以下有一种使用初等数学方法就能够解释调和级数发散的方法。

Method 2.

\sum_{n=1}^{+\infty}\frac{1}{n}

=1+\frac{1}{2}+(\frac{1}{3}+\frac{1}{4})+(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8})+...

>1+\frac{1}{2}+(\frac{1}{4}+\frac{1}{4})+(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8})+...

=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...=+\infty.

既然都提到了高等数学,那么当然不能仅仅局限于使用初等数学的技巧来解决问题。而且如果只是用初等数学的方法,在拓展性方面就会受到极大的限制。

Method 3. 调和级数的发散可以通过定积分的技巧来进行解决。

HarmonicSeries

1+\frac{1}{2}+...+\frac{1}{n}

>\int_{1}^{2}\frac{1}{x}dx + \int_{2}^{3}\frac{1}{x}dx+...+\int_{n}^{n+1}\frac{1}{x}dx

=\int_{1}^{n+1}\frac{1}{x}dx=\ln(n+1)

因此,\sum_{n=1}^{\infty}\frac{1}{n}=+\infty.

从上面的定积分的方法可以预计出调和级数的量级大约是对数的量级,那么能否精确的估计出来呢?例如下面这个问题:

问题:\lim_{n\rightarrow +\infty}\frac{\sum_{k=1}^{n}\frac{1}{k}}{\ln(n)}=?

通过 L’Hospital 法则可知:\lim_{x\rightarrow 0}x/\ln(1+x)=1.

通过 Stolz 定理可知:

\lim_{n\rightarrow +\infty}\frac{\sum_{k=1}^{n}\frac{1}{k}}{\ln(n)}

= \lim_{n\rightarrow +\infty}\frac{\frac{1}{n}}{\ln(n/(n-1))}

= \lim_{x\rightarrow 0}\frac{x}{\ln(1+x)}=1

除此之外,我们同样可以证明

\lim_{n\rightarrow+\infty}(1+\frac{1}{2}+...+\frac{1}{n}-\ln(n))

这个极限是存在并且有限的。

调和级数的推广

那么,如果在考虑 \zeta(2) 也就是级数

\zeta(2) = \sum_{n=1}^{\infty}\frac{1}{n^{2}}

是否收敛的时候,能否用到以上类似的技巧呢?首先,确实也存在各种各样的初等数学技巧,例如:

Method 1.

\sum_{n=1}^{+\infty}\frac{1}{n^{2}}<1+\sum_{n=2}^{+\infty}\frac{1}{n(n-1)}=1+\sum_{n=2}^{+\infty}(\frac{1}{n-1}-\frac{1}{n})=2.

Method 2. 使用数学归纳法。也就是要证明:

\sum_{k=1}^{n}1/k^{2}\leq 2-\frac{1}{n}.

n=1 的时候,公式是正确的。假设 n 的时候是正确的,那么我们有\sum_{k=1}^{n}1/k^{2}\leq 2-\frac{1}{n}。计算可得:

\sum_{k=1}^{n+1}\frac{1}{k^{2}}

<2-\frac{1}{n}+\frac{1}{(n+1)^{2}}

= 2- \frac{1}{n+1}-\frac{1}{n(n+1)^{2}}

\leq 2-\frac{1}{n+1}.

因此,不等式正确,所以 \sum_{n=1}^{+\infty}1/n^{2} 收敛。

其次,在判断调和级数发散的时候,使用的定积分的方法同样可以应用在这个场景下。

Method 3.

1+\frac{1}{2^{2}}+...+\frac{1}{n^{2}}

<1+\int_{1}^{2}\frac{1}{x^{2}}dx+...+\int_{n-1}^{n}\frac{1}{x^{2}}dx

=1+\int_{1}^{n}\frac{1}{x^{2}}dx=1+1-\frac{1}{n}<2.

那么这个是针对次数等于2的情况,对于一般的情形,

\zeta(s)=\sum_{n=1}^{+\infty}\frac{1}{n^{s}},\sigma = \Re(s)>1.

使用定积分的技术,同样可以证明对于任意的 \sigma = \Re(s)>1,都有 \zeta(s) 是收敛的。但是 \zeta(1) 是发散的。

Riemann Zeta 函数中某些点的取值

除此之外,既然 \zeta(s)\sigma = \Re(s)>1 的时候收敛,能否计算出某些函数的特殊值呢?答案是肯定的,例如,我们可以使用 Fourier 级数来计算出 \zeta(2), \zeta(4), \zeta(6),... 的取值。首先,我们回顾一下 Fourier 级数的一些性质:

假设 f(x) 是一个关于 2\pi 的周期函数, i.e. f(x)=f(x+2\pi) 对于所有的 x \in \mathbb{R} 都成立。那么函数 f(x) 的 Fourier 级数就定义为

a_{0}+\sum_{n=1}^{\infty} (a_{n} \cos(nx) +b_{n} \sin(nx)),

其中,a_{0}= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,

a_{n}= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx n\geq 1,

b_{n}= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx n\geq 1,

定理 1. 如果 f(x) 在区间 (-\pi, \pi) 上满足 Lipschitz 条件,那么

f(x) =a_{0}+\sum_{n=1}^{\infty} (a_{n} \cos(nx) +b_{n} \sin(nx)).

定理 2. Parseval’s 恒等式.

\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^{2} dx= 2a_{0}^{2}+ \sum_{n=1}^{\infty} (a_{n}^{2}+b_{n}^{2}).

下面我们就来证明下列恒等式:

\sum_{n=1}^{\infty} \frac{1}{(2n-1)^{2}}=\frac{\pi^{2}}{8}

\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}

\sum_{n=1}^{\infty} \frac{1}{(2n-1)^{4}}=\frac{\pi^{4}}{96}

\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}

证明:

选择在区间 (-\pi, \pi) 上的函数 f(x)=|x|,并且该函数是关于 2\pi 的周期函数。

使用 a_{n}b_{n} 的公式,我们可以得到函数 f(x)=|x| 的 Fourier 级数是

\frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2((-1)^{n}-1)}{\pi} \cdot \frac{cos(nx)}{n^{2}}

从定理1, 令 x=0, 可以得到

0= \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2((-1)^{n}-1)}{n^{2} \pi} = \frac{\pi}{2} + \sum_{m=1}^{\infty} \frac{-4}{(2m-1)^{2}\pi} = \frac{\pi}{2} - \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{(2m-1)^{2}}

因此,\sum_{n=1}^{\infty} \frac{1}{(2n-1)^{2}}=\frac{\pi^{2}}{8} .

假设 S=\sum_{n=1}^{\infty} \frac{1}{n^{2}} , 可以得到

S=\sum_{odd} \frac{1}{n^{2}} + \sum_{even} \frac{1}{n^{2}} = \frac{\pi^{2}}{8} + \frac{1}{4} S .

因此 S=\frac{\pi^{2}}{6} .

从 Parserval’s 恒等式,我们知道

\frac{2\pi^{2}}{3}= \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2}dx = 2\cdot (\frac{\pi}{2})^{2} + \sum_{n=1}^{\infty} \frac{4((-1)^{n}-1)^{2}}{\pi^{2}\cdot n^{4}} = \frac{\pi^{2}}{2} + \sum_{m=1}^{\infty} \frac{16}{\pi^{2} (2m-1)^{4}}

因此 \sum_{n=1}^{\infty} \frac{1}{(2n-1)^{4}} = \frac{\pi^{4}}{96} .

假设 S=\sum_{n=1}^{\infty} \frac{1}{n^{4}} , 得到

S=\sum_{odd} \frac{1}{n^{4}} + \sum_{even} \frac{1}{n^{4}} = \frac{\pi^{4}}{96} + \frac{1}{16} S

因此, S=\frac{\pi^{4}}{90} .

总结

本篇文章从调和级数的发散性开始,介绍了判断调和级数是否收敛的几种方法。进一步考虑了其他级数的收敛性,并通过 Fourier 级数的方法计算出了部分 Riemann Zeta 函数的取值。

Hausdorff dimension of the graphs of the classical Weierstrass functions

In this paper, we obtain the explicit value of the Hausdorff dimension of the graphs of the classical Weierstrass functions, by proving absolute continuity of the SRB measures of the associated solenoidal attractors.

1. Introduction

In Real Analysis, the classical Weierstrass function is

\displaystyle W_{\lambda,b}(x) = \sum\limits_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)

with {1/b < \lambda < 1}.

Note that the Weierstrass functions have the form

\displaystyle f^{\phi}_{\lambda,b}(x) = \sum\limits_{n=0}^{\infty} \lambda^n \phi(b^n x)

where {\phi} is a {\mathbb{Z}}-periodic {C^2}-function.

Weierstrass (1872) and Hardy (1916) were interested in {W_{\lambda,b}} because they are concrete examples of continuous but nowhere differentiable functions.

Remark 1 The graph of {f^{\phi}_{\lambda,b}} tends to be a “fractal object” because {f^{\phi}_{\lambda,b}} is self-similar in the sense that

\displaystyle f^{\phi}_{\lambda, b}(x) = \phi(x) + \lambda f^{\phi}_{\lambda,b}(bx)

We will come back to this point later.

Remark 2 {f^{\phi}_{\lambda,b}} is a {C^{\alpha}}-function for all {0\leq \alpha < \frac{-\log\lambda}{\log b}}. In fact, for all {x,y\in[0,1]}, we have

\displaystyle \frac{f^{\phi}_{\lambda, b}(x) - f^{\phi}_{\lambda,b}(y)}{|x-y|^{\alpha}} = \sum\limits_{n=0}^{\infty} \lambda^n b^{n\alpha} \left(\frac{\phi(b^n x) - \phi(b^n y)}{|b^n x - b^n y|^{\alpha}}\right),

so that

\displaystyle \frac{f^{\phi}_{\lambda, b}(x) - f^{\phi}_{\lambda,b}(y)}{|x-y|^{\alpha}} \leq \|\phi\|_{C^{\alpha}} \sum\limits_{n=0}^{\infty}(\lambda b^{\alpha})^n:=C(\phi,\alpha,\lambda,b) < \infty

whenever {\lambda b^{\alpha} < 1}, i.e., {\alpha < -\log\lambda/\log b}.

The study of the graphs of {W_{\lambda,b}} as fractal sets started with the work of Besicovitch-Ursell in 1937.

Remark 3 The Hausdorff dimension of the graph of a {C^{\alpha}}-function {f:[0,1]\rightarrow\mathbb{R}}is

\displaystyle \textrm{dim}(\textrm{graph}(f))\leq 2 - \alpha

Indeed, for each {n\in\mathbb{N}}, the Hölder continuity condition

\displaystyle |f(x)-f(y)|\leq C|x-y|^{\alpha}

leads us to the “natural cover” of {G=\textrm{graph}(f)} by the family {(R_{j,n})_{j=1}^n} of rectangles given by

\displaystyle R_{j,n}:=\left[\frac{j-1}{n}, \frac{j}{n}\right] \times \left[f(j/n)-\frac{C}{n^{\alpha}}, f(j/n)+\frac{C}{n^{\alpha}}\right]

Nevertheless, a direct calculation with the family {(R_{j,n})_{j=1}^n} does not give us an appropriate bound on {\textrm{dim}(G)}. In fact, since {\textrm{diam}(R_{j,n})\leq 4C/n^{\alpha}} for each {j=1,\dots, n}, we have

\displaystyle \sum\limits_{j=1}^n\textrm{diam}(R_{j,n})^d\leq n\left(\frac{4C}{n^{\alpha}}\right)^d = (4C)^{1/\alpha} < \infty

for {d=1/\alpha}. Because {n\in\mathbb{N}} is arbitrary, we deduce that {\textrm{dim}(G)\leq 1/\alpha}. Of course, this bound is certainly suboptimal for {\alpha<1/2} (because we know that {\textrm{dim}(G)\leq 2 < 1/\alpha} anyway).Fortunately, we can refine the covering {(R_{j,n})} by taking into account that each rectangle {R_{j,n}} tends to be more vertical than horizontal (i.e., its height {2C/n^{\alpha}} is usually larger than its width {1/n}). More precisely, we can divide each rectangle {R_{j,n}} into {\lfloor n^{1-\alpha}\rfloor} squares, say

\displaystyle R_{j,n} = \bigcup\limits_{k=1}^{\lfloor n^{1-\alpha}\rfloor}Q_{j,n,k},

such that every square {Q_{j,n,k}} has diameter {\leq 2C/n}. In this way, we obtain a covering {(Q_{j,n,k})} of {G} such that

\displaystyle \sum\limits_{j=1}^n\sum\limits_{k=1}^{\lfloor n^{1-\alpha}\rfloor} \textrm{diam}(Q_{j,n,k})^d \leq n\cdot n^{1-\alpha}\cdot\left(\frac{2}{n}\right)^d\leq (2C)^{2-\alpha}<\infty

for {d=2-\alpha}. Since {n\in\mathbb{N}} is arbitrary, we conclude the desired bound

\displaystyle \textrm{dim}(G)\leq 2-\alpha

A long-standing conjecture about the fractal geometry of {W_{\lambda,b}} is:

Conjecture (Mandelbrot 1977): The Hausdorff dimension of the graph of {W_{\lambda,b}} is

\displaystyle 1<\textrm{dim}(\textrm{graph}(W_{\lambda,b})) = 2 + \frac{\log\lambda}{\log b} < 2

Remark 4 In view of remarks 2 and 3, the whole point of Mandelbrot’s conjecture is to establish the lower bound

\displaystyle \textrm{dim}(\textrm{graph}(W_{\lambda,b})) \geq 2 + \frac{\log\lambda}{\log b}

Remark 5 The analog of Mandelbrot conjecture for the box and packing dimensions is known to be true: see, e.g., these papers here and here).

In a recent paper (see here), Shen proved the following result:

Theorem 1 (Shen) For any {b\geq 2} integer and for all {1/b < \lambda < 1}, the Mandelbrot conjecture is true, i.e.,

\displaystyle \textrm{dim}(\textrm{graph}(W_{\lambda,b})) = 2 + \frac{\log\lambda}{\log b}

Remark 6 The techniques employed by Shen also allow him to show that given {\phi:\mathbb{R}\rightarrow\mathbb{R}} a {\mathbb{Z}}-periodic, non-constant, {C^2} function, and given {b\geq 2} integer, there exists {K=K(\phi,b)>1} such that

\displaystyle \textrm{dim}(\textrm{graph}(f^{\phi}_{\lambda,b})) = 2 + \frac{\log\lambda}{\log b}

for all {1/K < \lambda < 1}.

Remark 7 A previous important result towards Mandelbrot’s conjecture was obtained by Barańsky-Barány-Romanowska (in 2014): they proved that for all {b\geq 2} integer, there exists {1/b < \lambda_b < 1} such that

\displaystyle \textrm{dim}(\textrm{graph}(W_{\lambda,b})) = 2 + \frac{\log\lambda}{\log b}

for all {\lambda_b < \lambda < 1}.

The remainder of this post is dedicated to give some ideas of Shen’s proof of Theorem1 by discussing the particular case when {1/b<\lambda<2/b} and {b\in\mathbb{N}} is large.

2. Ledrappier’s dynamical approach

If {b\geq 2} is an integer, then the self-similar function {f^{\phi}_{\lambda,b}} (cf. Remark 1) is also {\mathbb{Z}}-periodic, i.e., {f^{\phi}_{\lambda,b}(x+1) = f^{\phi}_{\lambda,b}(x)} for all {x\in\mathbb{R}}. In particular, if {b\geq 2} is an integer, then {\textrm{graph}(f^{\phi}_{\lambda,b})} is an invariant repeller for the endomorphism {\Phi:\mathbb{R}/\mathbb{Z}\times\mathbb{R}\rightarrow \mathbb{R}/\mathbb{Z}\times\mathbb{R}} given by

\displaystyle \Phi(x,y) = \left(bx\textrm{ mod }1, \frac{y-\phi(x)}{\lambda}\right)

This dynamical characterization of {G = \textrm{graph}(f^{\phi}_{\lambda,b})} led Ledrappier to the following criterion for the validity of Mandelbrot’s conjecture when {b\geq 2} is an integer.

Denote by {\mathcal{A}} the alphabet {\mathcal{A}=\{0,\dots,b-1\}}. The unstable manifolds of {\Phi}through {G} have slopes of the form

\displaystyle (1,-\gamma \cdot s(x,u))

where {\frac{1}{b} < \gamma = \frac{1}{\lambda b} <1}, {x\in\mathbb{R}}, {u\in\mathcal{A}^{\mathbb{N}}}, and

\displaystyle s(x,u):=\sum\limits_{n=0}^{\infty} \gamma^n \phi'\left(\frac{x + u_1 + u_2 b + \dots + u_n b^{n-1}}{b^n}\right)

In this context, the push-forwards {m_x := (u\mapsto s(x,u))_*\mathbb{P}} of the Bernoulli measure {\mathbb{P}} on {\mathcal{A}^{\mathbb{N}}} (induced by the discrete measure assigning weight {1/b} to each letter of the alphabet {\mathcal{A}}) play the role of conditional measures along vertical fibers of the unique Sinai-Ruelle-Bowen (SRB) measure {\theta} of the expanding endomorphism {T:\mathbb{R}/\mathbb{Z}\times\mathbb{R} \rightarrow \mathbb{R}/\mathbb{Z}\times\mathbb{R}},

\displaystyle T(x,y) = (bx\textrm{ mod }1, \gamma y + \psi(x)),

where {\gamma=1/\lambda b} and {\psi(x)=\phi'(x)}. In plain terms, this means that

\displaystyle \theta = \int_{\mathbb{R}/\mathbb{Z}} m_x \, d\textrm{Leb}(x) \ \ \ \ \ (1)

where {\theta} is the unique {T}-invariant probability measure which is absolutely continuous along unstable manifolds (see Tsujii’s paper).

As it was shown by Ledrappier in 1992, the fractal geometry of the conditional measures {m_x} have important consequences for the fractal geometry of the graph {G}:

Theorem 2 (Ledrappier) Suppose that for Lebesgue almost every {x\in\mathbb{R}} the conditional measures {m_x} have dimension {\textrm{dim}(m_x)=1}, i.e.,

\displaystyle \lim\limits_{r\rightarrow 0}\frac{\log m_x(B(z,r))}{\log r} = 1 \textrm{ for } m_x\textrm{-a.e. } z

Then, the graph {G=\textrm{graph}(f^{\phi}_{\lambda,b})} has Hausdorff dimension

\displaystyle \textrm{dim}(G) = 2 + \frac{\log\lambda}{\log b}

Remark 8 Very roughly speaking, the proof of Ledrappier theorem goes as follows. By Remark 4, it suffices to prove that {\textrm{dim}(G)\geq 2 + \frac{\log\lambda}{\log b}}. By Frostman lemma, we need to construct a Borel measure {\nu} supported on {G} such that

\displaystyle \underline{\textrm{dim}}(\nu) := \textrm{ ess }\inf \underline{d}(\nu,x) \geq 2 + \frac{\log\lambda}{\log b}

where {\underline{d}(\nu,x):=\liminf\limits_{r\rightarrow 0}\log \nu(B(x,r))/\log r}. Finally, the main point is that the assumptions in Ledrappier theorem allow to prove that the measure {\mu^{\phi}_{\lambda, b}} given by the lift to {G} of the Lebesgue measure on {[0,1]} via the map {x\mapsto (x,f^{\phi}_{\lambda,b}(x))}satisfies

\displaystyle \underline{\textrm{dim}}(\mu^{\phi}_{\lambda,b}) \geq 2 + \frac{\log\lambda}{\log b}

An interesting consequence of Ledrappier theorem and the equation 1 is the following criterion for Mandelbrot’s conjecture:

Corollary 3 If {\theta} is absolutely continuous with respect to the Lebesgue measure {\textrm{Leb}_{\mathbb{R}^2}}, then

\displaystyle \textrm{dim}(G) = 2 + \frac{\log\lambda}{\log b}

Proof: By (1), the absolute continuity of {\theta} implies that {m_x} is absolutely continuous with respect to {\textrm{Leb}_{\mathbb{R}}} for Lebesgue almost every {x\in\mathbb{R}}.

Since {m_x\ll \textrm{Leb}_{\mathbb{R}}} for almost every {x} implies that {\textrm{dim}(m_x)=1} for almost every {x}, the desired corollary now follows from Ledrappier’s theorem. \Box

3. Tsujii’s theorem

The relevance of Corollary 3 is explained by the fact that Tsujii found an explicittransversality condition implying the absolute continuity of {\theta}.

More precisely, Tsujii firstly introduced the following definition:

Definition 4

  • Given {\varepsilon>0}, {\delta>0} and {x_0\in\mathbb{R}/\mathbb{Z}}, we say that two infinite words {u, v\in\mathcal{A}^{\mathbb{N}}} are {(\varepsilon,\delta)}-transverse at {x_0} if either

    \displaystyle |s(x_0,u)-s(x_0,v)|>\varepsilon

    or

    \displaystyle |s'(x_0,u)-s'(x_0,v)|>\delta

  • Given {q\in\mathbb{N}}, {\varepsilon>0}, {\delta>0} and {x_0\in\mathbb{R}/\mathbb{Z}}, we say that two finite words {k,l\in\mathcal{A}^q} are {(\varepsilon,\delta)}-transverse at {x_0} if {ku}, {lv} are {(\varepsilon,\delta)}-transverse at {x_0}for all pairs of infinite words {u,v\in\mathcal{A}^{\mathbb{N}}}; otherwise, we say that {k} and {l} are{(\varepsilon,\delta)}-tangent at {x_0};
  • {E(q,x_0;\varepsilon,\delta):= \{(k,l)\in\mathcal{A}^q\times\mathcal{A}^q: (k,l) \textrm{ is } (\varepsilon,\delta)\textrm{-tangent at } x_0\}}
  • {E(q,x_0):=\bigcap\limits_{\varepsilon>0}\bigcap\limits_{\delta>0} E(q,x_0;\varepsilon,\delta)};
  • {e(q,x_0):=\max\limits_{k\in\mathcal{A}^q}\#\{l\in\mathcal{A}^q: (k,l)\in E(q,x_0)\}}
  • {e(q):=\max\limits_{x_0\in\mathbb{R}/\mathbb{Z}} e(q,x_0)}.

Next, Tsujii proves the following result:

Theorem 5 (Tsujii) If there exists {q\geq 1} integer such that {e(q)<(\gamma b)^q}, then

\displaystyle \theta\ll\textrm{Leb}_{\mathbb{R}^2}

Remark 9 Intuitively, Tsujii’s theorem says the following. The transversality condition {e(q)<(\gamma b)^q} implies that the majority of strong unstable manifolds {\ell^{uu}}are mutually transverse, so that they almost fill a small neighborhood {U} of some point {x_0} (see the figure below extracted from this paper of Tsujii). Since the SRB measure {\theta} is absolutely continuous along strong unstable manifolds, the fact that the {\ell^{uu}}‘s almost fill {U} implies that {\theta} becomes “comparable” to the restriction of the Lebesgue measure {\textrm{Leb}_{\mathbb{R}^2}} to {U}.

tsujiiacta

Remark 10 In this setting, Barańsky-Barány-Romanowska obtained their main result by showing that, for adequate choices of the parameters {\lambda} and {b}, one has {e(1)=1}. Indeed, once we know that {e(1)=1}, since {1<\gamma b}, they can apply Tsujii’s theorem and Ledrappier’s theorem (or rather Corollary 3) to derive the validity of Mandelbrot’s conjecture for certain parameters {\lambda} and {b}.

For the sake of exposition, we will give just a flavor of the proof of Theorem 1 by sketching the derivation of the following result:

Proposition 6 Let {\phi(x) = \cos(2\pi x)}. If {1/2<\gamma=1/\lambda b <1} and {b\in\mathbb{N}} is sufficiently large, then

\displaystyle e(1)<\gamma b

In particular, by Corollary 3 and Tsujii’s theorem, if {1/2<\gamma=1/\lambda b <1} and {b\in\mathbb{N}} is sufficiently large, then Mandelbrot’s conjecture is valid, i.e.,

\displaystyle \textrm{dim}(W_{\lambda,b}) = 2+\frac{\log\lambda}{\log b}

Remark 11 The proof of Theorem 1 in full generality (i.e., for {b\geq 2} integer and {1/b<\lambda<1}) requires the introduction of a modified version of Tsujii’s transversality condition: roughly speaking, Shen defines a function {\sigma(q)\leq e(q)}(inspired from Peter-Paul inequality) and he proves

  • (a) a variant of Proposition 6: if {b\geq 2} integer and {1/b<\lambda<1}, then {\sigma(q)<(\gamma b)^q} for some integer {q};
  • (b) a variant of Tsujii’s theorem: if {\sigma(q)<(\gamma b)^q} for some integer {q}, then {\theta\ll\textrm{Leb}_{\mathbb{R}^2}}.

See Sections 2, 3, 4 and 5 of Shen’s paper for more details.

We start the (sketch of) proof of Proposition 6 by recalling that the slopes of unstable manifolds are given by

\displaystyle s(x,u):=-2\pi\sum\limits_{n=0}^{\infty} \gamma^n \sin\left(2\pi\frac{x + u_1 + u_2 b + \dots + u_n b^{n-1}}{b^n}\right)

for {x\in\mathbb{R}}, {u\in\mathcal{A}^{\mathbb{N}}}, so that

\displaystyle s'(x,u)=-4\pi^2\sum\limits_{n=0}^{\infty} \left(\frac{\gamma}{b}\right)^n \cos\left(2\pi\frac{x + u_1 + u_2 b + \dots + u_n b^{n-1}}{b^n}\right)

Remark 12 Since {\gamma/b < \gamma}, the series defining {s'(x,u)} converges faster than the series defining {s(x,u)}.

By studying the first term of the expansion of {s(x,u)} and {s'(x,u)} (while treating the remaining terms as a “small error term”), it is possible to show that if {(k,l)\in E(1,x_0)}, then

\displaystyle \left|\sin\left(2\pi\frac{x_0+k}{b}\right) - \sin\left(2\pi\frac{x_0+l}{b}\right)\right| \leq\frac{2\gamma}{1-\gamma} \ \ \ \ \ (2)

and

\displaystyle \left|\cos\left(2\pi\frac{x_0+k}{b}\right) - \cos\left(2\pi\frac{x_0+l}{b}\right)\right| \leq \frac{2\gamma}{b-\gamma} \ \ \ \ \ (3)

(cf. Lemma 3.2 in Shen’s paper).

Using these estimates, we can find an upper bound for {e(1)} as follows. Take {x_0\in\mathbb{R}/\mathbb{Z}} with {e(1)=e(1,x_0)}, and let {k\in\mathcal{A}} be such that {(k,l_1),\dots,(k,l_{e(1)})\in E(1,x_0)} distinct elements listed in such a way that

\displaystyle \sin(2\pi x_i)\leq \sin(2\pi x_{i+1})

for all {i=1,\dots,e(1)-1}, where {x_i:=(x_0+l_i)/b}.

From (3), we see that

\displaystyle \left|\cos\left(2\pi x_i\right) - \cos\left(2\pi x_{i+1}\right)\right| \leq \frac{4\gamma}{b-\gamma}

for all {i=1,\dots,e(1)-1}.

Since

\displaystyle (\cos(2\pi x_i)-\cos(2\pi x_{i+1}))^2 + (\sin(2\pi x_i)-\sin(2\pi x_{i+1}))^2 = 4\sin^2(\pi(x_i-x_{i+1}))\geq 4\sin^2(\pi/b),

it follows that

\displaystyle |\sin(2\pi x_i)-\sin(2\pi x_{i+1})|\geq \sqrt{4\sin^2\left(\frac{\pi}{b}\right) - \left(\frac{4\gamma}{b-\gamma}\right)^2} \ \ \ \ \ (4)

Now, we observe that

\displaystyle \sqrt{4\sin^2\left(\frac{\pi}{b}\right) - \left(\frac{4\gamma}{b-\gamma}\right)^2} > \frac{4}{b} \ \ \ \ \ (5)

for {b} large enough. Indeed, this happens because

  • {\sqrt{z^2-w^2}>2(z-w)} if {z+w>4(z-w)};
  • {z+w>4(z-w)} if {z/w:=u < 5/3};
  • {\frac{2\sin(\frac{\pi}{b})}{\frac{4\gamma}{b-\gamma}}\rightarrow \frac{2\pi}{4\gamma} (< \frac{5}{3})} as {b\rightarrow\infty}, and {2\sin(\frac{\pi}{b}) - \frac{4\gamma}{b-\gamma} \rightarrow (2\pi-4\gamma)\frac{1}{b} (>\frac{2}{b})} as {b\rightarrow\infty} (here we used {\gamma<1}).

By combining (4) and (5), we deduce that

\displaystyle |\sin(2\pi x_i)-\sin(2\pi x_{i+1})| > 4/b

for all {i=1,\dots, e(1)-1}.

Since {-1\leq\sin(2\pi x_1)\leq\sin(2\pi x_2)\leq\dots\leq\sin(2\pi x_{e(1)})\leq 1}, the previous estimate implies that

\displaystyle \frac{4}{b}(e(1)-1)<\sum\limits_{i=1}^{e(1)-1}(\sin(2\pi x_{i+1}) - \sin(2\pi x_i)) = \sin(2\pi x_{e(1)}) - \sin(2\pi x_1)\leq 2,

i.e.,

\displaystyle e(1)<1+\frac{b}{2}

Thus, it follows from our assumptions ({\gamma>1/2}, {b} large) that

\displaystyle e(1)<1+\frac{b}{2}<\gamma b

This completes the (sketch of) proof of Proposition 6 (and our discussion of Shen’s talk).

从对数学的贡献上来讲,丘成桐有多厉害?

作者:匿名用户
链接:https://www.zhihu.com/question/33463090/answer/116836782
来源:知乎
著作权归作者所有,转载请联系作者获得授权。

补充一下某匿名用户的回答。他只是说了大方面,我来给大家补充一点细节。这些故事都是笔者多年来从不同渠道收集到的,虽然未必准确,却能很好地反映出丘先生高尚的人品,卓越的才能,和为祖国数学事业无私奉献的精神。

1.丘成桐教授不仅有数学才华,还很有商业天赋。他在Boston地区有三十多套房产。因为Harvard是个很有钱的学校,所以有很多闲置的房产,他们会用极低的价格把这些房产卖给教授。丘成桐教授以其杰出的商业眼光,前前后后一共买了三十多套,租给他的博士后,每年盈利不可胜计,真是令人钦佩!后来丘教授又看中了一处房子,但是学校却不愿意批准卖给他,所以他让当时是系主任的Ben Gross教授去询问缘由,后来Gross说,学校得知你在Boston地区有三十多套房产,实在太多了,所以不能卖给你。大家知道,在数学界,要想组织seminar和conference,经费是必不可少的。正因为丘教授有杰出的商业头脑和投资眼光,所以为中国数学的蓬勃发展输入了大量的物质财富,可谓是中国版的Simons。但是他的数学水平又远胜Simons,所以丘教授无愧为古往今来第一大师!

2.丘教授通过这些seminar和conference让大量的中国年轻数学家有了抛头露面和展示自己的机会。虽然这些年轻人的数学水平只可意会,但是相信通过丘教授的帮助会很快发展成为华人数学界的领军人物,继承他的资源和衣钵。近年来,丘教授在中国大陆,中国香港和台湾地区设立了大量的研究所。这些研究所的设立不但给不少人提供了很好的工作机会,也给不少想学数学的年轻人提供了优秀的平台。比如清华大学的丘成桐数学中心,可以说是亚洲第一数学中心,连日本京都的RIMS都是远远不如的,我想即使放到宇宙上也是名列前茅的。在这里我们应该特别欢迎广大二本和三本的数学系学生报考这些研究所,因为丘先生的理念就是要给普通高校热爱数学的学生以机会。

3.丘教授每年都到中国的各所高校讲学,尤其是他开设的几个数学中心,这些讲座传授给年轻人许多高深的数学知识和实用的数学技巧。他演讲的话题包括:数学之美、我的成功经验、Harvard数学系的历史和我的一个不听话的学生等等。内容丰富,发人深省,不但能从中学到数学知识,还能体会到许多做(中国)人的道理。可悲的是,一些反动派受到西方自由思想的荼毒,对这样高质量的讲座却视而不见,拒绝参加,其中包括一些数学界的同行。丘教授知悉此事后,给这些人发了一封邮件,明确要求他们:今后只要是我来你们学校做讲座,所有中国人就必须参加!丘先生的严厉做法很好地整肃了华人数学界的风气,提高了凝聚力。相信在丘先生的领导下,大家一定能鼓足干劲,力争上游,多快好省地建设中国数学!

4.丘教授亲自培养的许多学生都有极高的数学水准,在国际上获得广泛承认,多次荣获重大国际奖项,比如晨兴数学奖、新世界数学奖、陈省身奖之中国版等等。这些学生不仅自己水平惊人,对年轻人也提供了无微不至的关怀和细致周到的帮助。比如,丘教授的不少学生害怕学生没有自己的想法,经常亲自给学生提供idea,来帮助学生找到研究的思路。即使学生不需要也要苦口薄心,再三敦促。这样一来,不仅学生可以发paper,他们自己也因为贡献了一个“关键的”idea而顺便加到了名字,可谓是一举两得的做法。丘教授另一些学生因为害怕国际上一些著名杂志的编辑是势利眼,不让年轻学生单独发paper,所以不惜牺牲自己的名节,主动要求在paper上加名字。这样一来,学生发文章的时候就不会吃亏了。他们为学生的付出令人感动。可悲的是,一些年轻人不但不知道感恩,反而对此感到苦恼。对这样的人,我们就应该毫不犹豫地把他们踢出华人数学界,让他们去落后的西方世界吃点苦头!

5.丘教授掌握了国际上一本极为重要的数学杂志,即Journal of Differential Geometry。这本杂志现在成为许多年轻人展示自己只可意会的数学水平和找到教职的最佳平台。为了方便某些中国学生在杂志上发表论文,丘教授提供了一些非同寻常的便捷渠道。比如文章不用发给编辑,可以直接发给自己,再由他转发给编辑。这样一来,中国数学家的文章就经常出现在顶级杂志上,他们的研究水准得到了空前飞跃!丘教授控制的另一本杂志就是大名鼎鼎的Asian Journal。这本杂志上发表了人类在20世纪到21世纪一些最伟大的数学工作,比如朱熹平教授和曹怀东教授对Poincare猜想的最终证明,封顶了人类一百余年来悬而未决的难题。这篇文章长达300多页,但是经过Asian Journal的编辑不知疲倦的辛勤工作,该论文在极短的时间内就获得了发表。可以看到,丘教授在经营杂志以后,杂志审核文章的效率大大提高了。可以说,正是丘教授勤劳刻苦,生命不息,奋斗不止的精神感召了这些编辑,让他们不再玩忽职守和放松懈怠。

6.丘成桐教授对自己学生的关怀可以说是无微不至。有些学生一时糊涂涉嫌抄袭和剽窃,丘教授知道以后果断采取措施,息事宁人,避免了家丑外扬。中国数学界正是在丘先生的努力下才能铁板一块地团结在一起,大家毫无私心,全心全意为中国数学的发展添砖加瓦。但是有些人却不明白丘教授的苦心,经常在丘教授面前投诉,甚至还写匿名信把事情闹到别的学校。对此,丘教授态度坚决,铁面无私地无视了这些无理要求,可以说很好地体现了一位领袖的英明果决。而那些闹事的逆流虽然可能有一点点数学水平,但是今天也没办法站出来领导数学界了。就是因为某些人只知道做研究和思考数学问题,没有意识到帮助中国数学发展才是更有意义的事。思想境界比起丘教授差的太远了。可以说,丘先生高瞻远瞩,气盖环宇,数风流人物,还看今朝。

7.丘教授对中国学生的关心不仅仅局限在数学系,还遍及到各个非数学领域。从前,只要是中国、香港和台湾去Harvard读数学的学生,丘教授都要亲自过问,热情关怀,把他们一一纳入自己门下。比如某学生要跟Taubes,他会亲自找到Taubes,告诉他,这位学生就托付给你了。这样一来,这些西方数学家慑于丘先生的气魄和威望,就不敢再歧视中国学生了。到了后来,只要去Harvard的中国、香港和台湾学生,无论学什么专业,丘先生都要跟他们打交道。据说他还曾经举办过大型party,邀请Harvard商学院大中华地区的所有学生参加。这些活动使他亲民的形象更加突出,在各界广受好评。相信不久的将来,丘教授会吸引到亚洲其他地区的学生参与他的party。像他这的一代王者,相信任何人都会被他的魅力所感召。毕竟只有深入到人民群众中去,才能发现问题所在。丘教授真不愧为一代明君!

8.丘教授虽然已经接近70高龄,仍然老骥伏枥,近年来在数学研究上非常活跃。仅2015一年就在arxiv贴文23篇,以每个月两篇论文的速度进行高质量的数学研究,这是古往今来其他任何数学家都望尘莫及的!要知道,丘教授作为华人数学界的领袖,每天要处理几百封邮件。熟悉丘教授的朋友们都知道,即使是在seminar上他也要一边摁手机收发邮件,一边听talk。能在如此繁忙的情况下一个月写两篇论文,效率之高真是令人震惊!丘教授还特别注意与年轻人的合作,近年来每篇论文几乎都要提携一些年轻数学家,大度地和他们一起署名发表。由于他提携的年轻数学家太多,很多时候甚至会忘记自己的合作者。比如某韩国数学家之前跟他有合作,到了找教职的时候希望丘教授能帮自己写推荐信,但是丘教授却坦言自己并不认识对方。实际上,丘教授不认识自己的合作者正可以反映出他已经帮助了太多年轻人,以至于自己都想不起来自己干的那些好事!范仲淹说:云山苍苍,江水泱泱,先生之风,山高水长。丘先生年近七旬而笔耕不辍,真可谓吾辈典范!

9.丘成桐教授对于人才优劣的判断也是明察秋毫,一望即知。早先,北大一个学生仗着自己是那一届最优秀的就自不量力,想要去Harvard跟丘教授学数学,丘教授对他说:你水平不行。想跟我也可以,先去Boston待两年,经我考察合格了,再来跟我。这个学生不得已之下去了另一个inferior的学校跟了一个比丘教授差了十万八千里的数学家M。事实证明,这个学生现在虽然出了一点小名,在Yale做教授,但是确实不够资格在Harvard做丘教授的学生:因为他只拿到了晨兴数学银奖,而丘教授的学生一般都是拿金奖的。
还有一次,丘教授的学生,国际著名数学家刘教授的一个学生L经刘教授推荐去Harvard师从丘成桐教授,而刘教授另一个学生不服,认为自己比L优秀。他给丘教授发邮件针对此事发了一大堆牢骚,丘教授立刻把他的邮件转发给了刘教授,叫刘教授严加管教。而事实证明,虽然这个学生目前在自己的领域是一个优秀的数学家,但是比起L来差的太远了,因为后者后来解决了国际上多年悬而未决的Hopf猜想,即使在历史上也要留名的。值得一提的是,L不仅数学了得,他满腔的爱国情怀也令人感动。有一次,Harvard一位教授不小心把台湾说成是一个国家,L立刻站起来,义正辞严地告诉该教授:“台湾是中国不可分割的一部分!”像这样品学兼优的杰出青年正是建设祖国数学事业所需要的人才啊!如果不是丘教授乾纲独断,岂不失之交臂?
像丘成桐教授这样慧眼识金的伯乐正是中国数学界最需要的伟大领袖。只要有了他,没有一个人才会被埋没,没有一个庸才可以投机。野无遗贤,万邦咸宁。天降丘神,万物生明!
——————————————–
先写到这里,丘先生的贡献还有很多,许多细节的地方因为空白太小,都已经写不下了,有待日后慢慢总结整理。作为丘教授的铁杆粉丝,我要告诉学数学的年轻人一个简单的道理:没有丘成桐教授开天辟地,创造了数学这个领域,哪来你们今天的归宿?所以,学好数学固然重要,但是更重要的是坚持丘教授在中国数学界的领导地位,紧密团结在他的周围,为早日把中国建设成数学强国而奋斗!军民团结如一人,试看天下谁能敌!

低维动力系统

One Dimensional Real and Complex Dynamics需要学习的资料:

复分析基础:本科生课程

(1) Complex Analysis, 3rd Edition, Lars V. Ahlfors

(2) Complex Analysis, Elias M. Stein

进阶复分析:研究生课程

(1) Lectures on Riemann Surfaces (GTM 81), Otto Forster

(2) Lectures on Quasiconformal Mappings, Lars V. Ahlfors

实分析基础:本科生课程

(1) Real Analysis, Rudin

(2) Real Analysis, Elias M. Stein

专业书籍:

实动力系统:

(1) One Dimensional Dynamics, Welington de Melo & Sebastian VanStrien

(2) Mathematical Tools for One-Dimensional Dynamics (Cambridge Studies in Advanced Mathematics), Edson de Faria / Welington de Melo

复动力系统:

(3) Dynamics in One Complex Variable, John Milnor

(4) Complex Dynamics, Lennart Carleson

(5) Complex Dynamics and Renormalization, Curtis T. McMullen

(6) Renormalization and 3-Manifolds Which Fiber over the Circle, Curtis T. McMullen

(7) Iteration of rational functions (GTM 132), Alan F. Beardon

遍历论:

(8) An Introduction to Ergodic Theory (GTM 79), Walters Peter

Complex Analysis

学习复分析也已经很多年了,七七八八的也读了不少的书籍和论文。略作总结工作,方便后来人学习参考。 复分析是一门历史悠久的学科,主要是研究解析函数,亚纯函数在复球面的性质。下面一一介绍这些基本内容。

300px-Mandel_zoom_00_mandelbrot_set

(1)提到复变函数,首先需要了解复数 (Complex Numbers) 的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与xy坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。

(2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到复平面里面,从而引出解析函数 (Holomorphic Functions / Analytic Functions) 的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓的Cauchy—Riemann公式,这个是判断一个函数是否是解析函数的关键所在。

(3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分 (Line Integrals) 的概念引入复分析中,定义几乎是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy积分公式 (Cauchy’s Integral Formula)。这个是复分析的第一个重要定理。

(4)既然是解析函数,那么函数的定义域 (Domain) 就是一个关键的问题。可以从整个定义域去考虑这个函数,也可以从局部来研究这个函数。这个时候研究解析函数的奇点 (Singularity) 就是关键所在,奇点根据性质分成可去奇点 (Removable Singularity),极点 (Pole),本性奇点 (Essential Singularity) 三类,围绕这三类奇点,会有各自奇妙的定理。

(5)复变函数中,留数定理 (Residue Theorem) 是一个重要的定理,反映了曲线积分和零点极点的性质。与之类似的幅角定理也展示了类似的关系。

(6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛 (Convergence) 的概念就可以引出 Taylor 级数 (Taylor Series) 和 Laurent 级数 (Laurent Series) 的概念。除此之外,正规族 (Normal Families) 里面有一个非常重要的定理,那就是Arzela定理。

(7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于 Riemann 映照定理 (Riemann Mapping Theorem)。这个时候一般会介绍线性变换,就是 Mobius 变换 (Mobius Transforms),把各种各样的单连通区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。

(8)椭圆函数 (Elliptic Functions),经典的双周期函数 (Double Periodic Functions)。这里有 Weierstrass 理论,是研究 Weierstrass 函数的,有经典的微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

推荐书籍:

(1)Complex Analysis,3rd Edition,Lars V.Ahlfors

ahlfors.jpg

(2)Complex Analysis,Elias M. Stein

stein.jpg

调和分析

之前在北京大学学了整整一个学期的调和分析,是由BICMR的苗老师主讲。在这门课上我受益匪浅,故写一篇文章来感激下这位老师,同时写一下自己学习调和分析的感受。

调和分析起源于 Fourier 这位数学家的研究,故也可以称为 Fourier 分析。其主要内容包括算子插值方法,Hardy-Littlewood 极大算子,Fourier变换,Calderon-Zygmund’s Inequality, 函数空间,Ap 权等等。下面一一介绍这些基本内容。

(1) 算子插值方法

里面主要有 Marcinkiewicz Interpolation Theorem 和 Riesz Thorin Interpolation Theorem两个定理,分别是用实变方法和复变方法证明的。这两个定理则是研究算子的 L^p 有界性的关键定理,是整个调和分析的基础。

(2) Hardy—Littlewood Maximal Operator

这个是一个相当重要的拟线性算子,利用 Vitali Covering Theorem 和 Marcinkiewicz Interpolation Theorem 可以证明该算子是 L^p 有界的。证明过程不超过10行,但是证明过程相当的漂亮。

(3) Fourier Transformation

调和分析的主要工具,这个工具不仅仅在调和分析上有用,在 PDE 和随机过程中,这也是一个相当重要的工具。它把一个物理空间上的函数,转换成频率空间上的函数,从而获得了很多很好的性质。

(4) Calderon-Zygmund’s Inequality

这个定理是调和分析的经典定理之一,是处理卷积型的奇异积分的。可以看成是 Minkowskii 不等式的推广。Zygmund 把定理的条件放的很弱,只需要加上 Hormander 条件就可以得到算子的 L^p 有界性。然后也可以考虑其条件的充要条件。

(5) 函数空间

调和分析里面提到的函数空间包括 Sobolev space, Lipschitz space, Hardy space, Besov space 等等。 其中 Sobolev space 在 PDE 上面用处广泛,其代表作就是 Adams 的 Sobolev Space. Besov Space 里面有一个插值定理,也相当的重要,差不多5页吧,当时苗老师让我们全部背下来,嘿嘿。另外, Hardy Space里面有一个相当重要的定理,就是所谓的 Duality of BMO and H^1 Space. 其证明过程大概有10页吧,是由 C.Fefferman 和 Elias.M.Stein 在上个世纪70年代给出的,方法太经典了,看完之后甚至会觉得自己没有必要学数学了。

(6) Ap weight

这个也是调和分析的分支之一,其中周民强老先生的书上有详细记载,就不一一阐述了。

以上的这些内容就是之前一个学期在北大学习所学到的东西,学了调和分析之后,基本上就不怕所谓的硬分析了。总之收获还是蛮多的,非常欣赏那位老师,一个学期讲了那么多东西。其实以上我提到的只是他讲的东西的一半内容,他后面还讲了很多 Schrodinger 方程的内容,由于本人实力有限,实在是没有能力再学后面的内容了。

ps:这是2009年的事情了,一晃眼7年过去了。

参考文献:
Loukas Grafakos GTM249 Classical Fourier Analysis
Loukas Grafakos GTM250 Modern Fourier Analysis
(上面这两本书是调和分析的经典之作,几乎涵盖了实变方法的所有内容。不过有点厚,差不多1100页。)