在新加坡的这五年—学术篇

每次提到数学这个词,大家能够想到的就是初等代数,平面几何,组合运算,微积分,线性代数,概率论等方向。但在整个数学领域(Earth of Math)上,还有很多更有意思的领域和研究方向,包括数论,几何,拓扑,分形几何,分析,概率统计,博弈论,代数等诸多方向,每一个方向都有很多优秀的数学家在从事相关研究。

EarthofMath
Earth of Mathematics

当年在数学系的时候,所研究的方向是分形几何(Fractal Geometry)和复动力系统(Complex Dynamics),位于 Earth of Math 的左侧,称之为分形湖泊(Fractal Lakes)。所谓分形,其实是一个粗糙或者零碎的集合形状,可以分成多个部分,且每个部分放大之后与整体有某种相似性,即具有自相似性的性质。而动力系统则是基于某种固定的规则,描述一个空间内的所有点随时间的变化情况,例如钟摆的晃动,水的流动,湖泊里面鱼类的数量。备注:动力系统并不是指汽车的动力系统和发动机引擎,这两者毫无关系。

而复动力系统则是动力系统中的一个分支,研究的是有理函数的迭代性质。所谓函数的迭代,指的是针对有理函数 f(z),考察其定义域的点 z\in \hat{\mathbb{C}}n 次复合,得到 f^{(n)}(z)=f\circ\cdots\circ f(z),进一步可以研究 \lim_{n\rightarrow +\infty}f^{(n)}(z) 的极限。

针对不同的定义域,函数的迭代有着完全不同的研究方法。当时的研究方向是复动力系统(Complex Dynamical Systems)。复动力系统理论的研究始于 1920 年,当时是由数学家 Fatou 和 Julia 研究的,因此复动力系统中的两个重要的集合就是以 Fatou 和 Julia 来命名的,分别称之为 Fatou set 和 Julia Set。随着计算机技术的演进,在上世纪八十年代这些集合可以通过计算机进行可视化,分形几何和复动力系统理论开始蓬勃发展起来。在与双曲几何、分形几何、现代分析学和混沌学等学科发展相互促进的同时,围绕双曲猜想以及 Mandelbrot 集合的研究工作,成为当今复动力系统的研究热点。

举个例子,函数 f(z) = z^{2}+0.7885 e^{ia}a\in[0,2\pi])的 Julia 集合的动图如下:

JuliaSet_1
Julia 集合

当然,科研的时候可不是做一点可视化就算完成任务了,还是需要按部就班的学习各种数学知识和技能。

之前在学校研究动力系统的时候,收集过一些书籍,在此列举给大家,希望对初学者有一定的帮助。One Dimensional Real and Complex Dynamics实与复动力系统)需要学习的资料如下:

基础书籍:

复分析基础:本科生课程。学习数学知识自然需要循序渐进,除了必要的数学分析,高等代数之外,分析学则是动力系统所必备的知识之一。既然是复动力系统,那肯定就要集中于研究复分析,因此本科的复分析则是复动力系统的必修课之一。

(1) Complex Analysis, 3rd Edition, Lars V. Ahlfors

(2) Complex Analysis, Elias M. Stein

进阶复分析:研究生课程

到了研究生阶段,其实也不足以直接上手搞科研,需要进一步地学习黎曼曲面,拟共形映射等专业书籍,才能够为复动力系统的学习打下基础。

(1) Lectures on Riemann Surfaces (GTM 81), Otto Forster

(2) Lectures on Quasiconformal Mappings, Lars V. Ahlfors

实分析基础:本科生课程

研究动力系统,实分析也是其基础知识之一,无论是通过学习 Stein 还是 Rudin 的教材,都是为了进一步地了解基础知识。

(1) Real Analysis and Complex Analysis, Rudin

(2) Real Analysis, Elias M. Stein

专业书籍:

实动力系统:

(1) One Dimensional Dynamics, Welington de Melo & Sebastian VanStrien

这本书难度较大,上手的时候不建议直接看这本书。

OneDimensionalDynamics
One-Dimensional Dynamics

(2) Mathematical Tools for One-Dimensional Dynamics (Cambridge Studies in

Advanced Mathematics), Edson de Faria / Welington de Melo

MathematicalToolsforOneDimensionalDynamics
Mathematical Tools for One-Dimensional Dynamics

复动力系统:

(3) Dynamics in One Complex Variable, John Milnor;Milnor 的教材总是写的清晰明确,容易上手,推荐初学者可以读这本书。

DynamicsinOneComplexVariable
Dynamics in One Complex Variable

(4) Complex Dynamics, Lennart Carleson;Carleson 的教材偏向于分析学,读起来其实也有点难度,还是读 Milnor 的教材相对容易。

ComplexDynamics
Complex Dynamics

(5) Complex Dynamics and Renormalization, Curtis T. McMullen;McMullen 的书适合当做查阅,也不太适合从头到尾读下去。

ComplexDynamicsandRenormalization
Complex Dynamics and Renormalization

(6) Renormalization and 3-Manifolds Which Fiber over the Circle, Curtis T. McMullen

Renormalizationand3Manifolds
Renormalization and 3-Manifolds Which Fiber over the Circle

(7) Iteration of rational functions (GTM 132), Alan F. Beardon

遍历论:

(8) An Introduction to Ergodic Theory (GTM 79), Walters Peter

学术会议

除了日常的科研之外,博士生时不时地可以去参加一下学术会议,不仅可以去参加本方向的学术会议,也可以去参加其它方向的学术会议,只要有一份邀请函即可。

如果是在 NUS 的 IMS(Institute for Mathematical Sciences)举办的学术会议,一般来说只要是在校的研究生都是可以参加的。记得当时参加的第一个学术会议是关于 PDE 的,标题叫做 Hyperbolic Conservation Laws and Kinetic Equations:Theory, Computation, and Applications(1 November – 19 December 2010)。笔者去听这个系列讲座是因为在 2010 年选择了一门 PDE 的研究生课程,而这个讲座则是作为课程的一部分。

IMSWorkshopGroupPhoto2012_6
IMS 的偏微分方程学术会议

笔者参与的另外一个学术会议则是关于动力系统的,标题叫做 Workshop on Non-uniformly Hyperbolic and Neural One-dimensional Dynamics(23 – 27 April 2012),主要是关于非一致双曲动力系统方向的研讨会。笔者记得当时所修的课程应该只有概率论(Probability II)一门课,因此上课的任务不算很重。参会的时间恰好是学期快结束的时候,科研的任务也不算特别繁重。因此,积极参与各种学术会议也算是科研的其中一部分,一来通过参会可以了解当前的学术研究情况,二来可以认识学术界的各种人士,也算是扩大学术交流圈子的好机会。

IMSWorkshopGroupPhoto2012_2
IMS 的动力系统学术会议

既然是学术会议,那自然就有各种各样的 Presentations,学术会议的第一天通常是需要有 IMS 的领导来致辞的,表示学术会议正式开始。每天的学术会议都需要有个 chair 来组织,一天的学术会议基本上是从早到晚,大约从早上 9:30 开始,到下午 4:40 结束。而每个学者汇报时间大约是 50 mins 左右。

IMSWorkshopGroupPhoto2012_3
第一天的研讨会安排

这次的学术会议是关于动力系统方向的,那师兄们自然是需要上台做报告的。当时上场的师兄包括大师兄和二师兄,至于三师兄和我则暂时没有成果可以汇报。两位师兄在 IMS 的报告厅里面做了十分精彩的成果展示,会议之后也有不少同行来与师兄们讨论问题。

IMSWorkshopGroupPhoto2012_4
同门汇报工作

一般来说,每次研讨会的开始和结束都需要有一个仪式,除了 IMS 的领导致辞表示会议开始之外,在茶歇时间(Coffee Break)期间是可以四处走动的,并且在第一次茶歇的时候,全体参会人员都会在 IMS 附近拍照留念,预祝本次研讨会成功举办。

IMSWorkshopGroupPhoto2012_5
Group Photo

论文

读到博士自然需要研究一下相应的课题,例如下面这种就是数学系博士生所研究的课题。​

Question. 是否存在 \ell\geq 4 的偶数和复数 c\in\mathbb{C} 使得 f(z)=z^{\ell}+c 的 Julia 集合 J(f) 是正测度?

针对这个课题,数学系的博士生需要翻阅历史上的相关书籍和论文,阅读其相关论文才能够得到前沿技术和进展。当年花时间阅读的论文主要是几篇 Annals 上面的文章,参考资料也是这几篇文章,不过每一篇文章至少都是 40 页左右,基本上看一篇文章需要花几个月的时间。

1. Combinatorics, geometry and attractors of quasi-quadratic maps,Pages 345-404 from Volume 140 (1994), Issue 2 by Mikhail Lyubich

Paper_1

2. Wild Cantor attractors exist,Pages 97-130 from Volume 143 (1996), Issue 1 by Hendrik Bruin, Gerhard Keller, Tomasz Nowicki, Sebastian van Strien

Paper_2

3. Quadratic Julia sets with positive area,Pages 673-746 from Volume 176 (2012), Issue 2 by Xavier Buff, Arnaud Chéritat

Paper_3

4. Polynomial maps with a Julia set of positive measure,Nowicki, Tomasz, and Sebastian van Strien,arXiv preprint math/9402215(1994).

Paper_4

备注:第 4 篇文章 Polynomial maps with a Julia set of positive measure 里面有错误,通过其证明是无法得到最终结论的,因此是否存在正测度的 Julia 集合一直是未知的。直到 2012 年的第 3 篇文章出来,才算证明了二次多项式存在正测度的 Julia 集合。但是对于高次多项式,是否存在正测度的 Julia 集合则是完全未知的。

在拿到论文和课题之后,那就开始需要研究了。草稿纸也算了一张又一张,论文也打印了一份又一份,科研之路哪有一帆风顺的,基本上都是历经曲折,才能够达到毕业的彼岸。毕业的时候写了一篇文章《科研这条路》,以此来纪念读博五年的生涯。

PlanandReality
理想与现实

参考资料:

  1. 科研这条路
  2. 维基百科:Julia 集合

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s