时间序列的自回归模型—从线性代数的角度来看

Fibonacci 序列

在开始讲解时间序列的自回归模型(AutoRegression Model)之前,我们需要先介绍一下线性代数的基础知识。为了介绍线性代数的基础知识,我们可以先看一个简单的例子。考虑整数序列 Fibonacci 序列,它的通项公式是一个递归函数,每项的取值是由前两项所生成的,其具体的公式就是

F_{n}=F_{n-1}+F_{n-2}

其初始值是 F_{0}=0, F_{1} = 1。按照其递归公式来计算,我们可以详细写出前面的几项,那就是:

0,1,1,2,3,5,8,13,21,34,55,89,144,…

但是,计算 Fibonacci 的通项公式则比计算等差数列和等比数列的通项公式复杂的多,因为这里需要使用线性代数的技巧才能解决这个问题。

求解 Fibonacci 序列的通项公式 --- 矩阵对角化

根据 Fibonacci 数列的递归公式,基于矩阵乘法的定义,Fibonacci 序列可以写成如下形式:

\left( \begin{array}{c} F_{n+2}  \\ F_{n+1}  \\ \end{array}\right)= \left( \begin{array}{cc} 1 & 1 \\ 1 & 0 \\ \end{array}\right) \left( \begin{array}{c} F_{n+1}  \\ F_{n}  \\ \end{array}\right) = A \left( \begin{array}{c} F_{n+1}  \\ F_{n}  \\ \end{array}\right),

\left( \begin{array}{c} F_{n}  \\ F_{n-1}  \\ \end{array}\right)= A \left( \begin{array}{c} F_{n-1}  \\ F_{n-2}  \\ \end{array}\right) = \cdots = A^{n-1} \left( \begin{array}{c} F_{1}  \\ F_{0}  \\ \end{array}\right).

这就意味着我们需要计算出矩阵 A 的幂。在线性代数里面,为了计算矩阵的 n 次方,除了通过矩阵乘法的公式直接计算之外,还有一个经典的技巧,那就是将矩阵对角化。详细来说,如果 m\times m 的矩阵 A 能够对角化,那就是存在可逆矩阵 P 使得

P^{-1}AP = diag(\lambda_{1},\cdots,\lambda_{m})

\implies AP = P diag(\lambda_{1},\cdots,\lambda_{m})

\implies A = P diag(\lambda_{1},\cdots,\lambda_{m})P^{-1}.

其中 D = diag(\lambda_{1},\cdots,\lambda_{m}) 表示一个 m\times m 的对角矩阵,其对角的元素从左上角到右下角依次是 \lambda_{1},\cdots,\lambda_{m}。如果把矩阵 P 写成列向量的形式,i.e. P =(\vec{\alpha}_{1},\cdots,\vec{\alpha}_{m}),那么以上的矩阵方程就可以转换为 A\vec{\alpha}_{i} = \lambda_{i}\vec{\alpha}_{i}, 1\leq i\leq m。进一步来说,如果要计算矩阵 A 的幂,就可以得到:

A^{k} = (PDP^{-1})\cdots(PDP^{-1}) = P D^{k} P^{-1}= P diag(\lambda_{1}^{k},\cdots,\lambda_{m}^{k})P^{-1}.

另外,如果想知道一个矩阵 A 的特征值和特征向量,则需要计算以下多项式的根,i.e. 计算关于 \lambda 的多项式的解,

det(\lambda I - A) = 0,

其中 I 是一个单位矩阵(identity matrix)。

按照以上的思路,如果令

A = \left( \begin{array}{cc} 1 & 1 \\ 1 & 0 \\ \end{array}\right),

可以计算出 A 的两个特征值分别是 \phi=(1+\sqrt{5})/2- \phi^{-1} = (1-\sqrt{5})/2,它们所对应的特征向量分别是:

\vec{\alpha}_{1} = (\phi,1)^{T}, \vec{\alpha}_{2} = (-\phi^{-1},1).

因此直接计算可以得到

F_{k} = \frac{1}{\sqrt{5}}\bigg(\frac{1+\sqrt{5}}{2}\bigg)^{k} - \frac{1}{\sqrt{5}}\bigg(\frac{1-\sqrt{5}}{2}\bigg)^{k}=\frac{\phi^{k}-(-\phi)^{-k}}{\sqrt{5}}.

通过上面的计算方法,为了计算 Fibonacci 数列的通项公式,我们可以先把它转换成一个矩阵求幂的问题,于是我们就能矩阵对角化的方法把 Fibonacci 数列的通项公式求出来。

时间序列的弱平稳性

要讲解自回归模型,就必须提到时间序列的弱平稳性。一个时间序列 \{x_{t}\}_{t\geq 0} 具有弱平稳性(Weak Stationary)指的是:

  1. E(x_{t}) 对于所有的 t\geq 0 都是恒定的;
  2. Var(x_{t}) 对于所有的 t\geq 0 都是恒定的;
  3. x_{t}x_{t-h} 的协方差对于所有的 t\geq 0 都是恒定的。

另外,时间序列的自相关方程(AutoCorrelation Function)指的是对于 h = 1,2,3,\cdots,可以定义 ACF 为

ACF(x_{t},x_{t-h}) = \frac{Covariance(x_{t},x_{t-h})}{\sqrt{Var(x_{t})\cdot Var(x_{t-h})}}.

如果时间序列 \{x_{t}\}_{t\geq 0} 在弱平稳性的假定下,ACF 将会简化为

ACF(x_{t},x_{t-h}) = \frac{Covariance(x_{t},x_{t-h})}{Var(x_{t})}.

时间序列的自回归模型(AutoRegression Model)

AR(1) 模型

AR(1) 模型指的是时间序列 \{x_{t}\}_{t\geq 0} 在时间戳 t 时刻的取值 x_{t} 与时间戳 t - 1 时刻的取值 x_{t-1} 相关,其公式就是:

x_{t}=\delta+\phi_{1}x_{t-1}+w_{t}

这个时间序列 \{x_{t}\}_{t\geq 0} 满足如下条件:

  1. w_{t}\sim N(0,\sigma_{w}^{2}),并且 w_{t} 满足 iid 条件。其中 N(0,\sigma_{w}^{2}) 表示 Gauss 正态分布,它的均值是0,方差是 \sigma_{w}^{2}
  2. w_{t}x_{t} 是相互独立的(independent)。
  3. x_{0},x_{1},\cdots弱平稳的,i.e. 必须满足 |\phi_{1}|<1

如果选择初始条件 x_{0}=1,则可以得到一些 AR(1) 模型的例子如下图所示:

AR Models

从 AR(1) 以上的定义出发,我们可以得到:

  1. E(x_{t}) = \delta/(1-\phi_{1}).
  2. Var(x_{t}) = \sigma_{w}^{2}/(1-\phi_{1}^{2}).
  3. Covariance(x_{t},x_{t-h}) = \phi_{1}^{h}.

Proof of 1. 从 AR(1) 的模型出发,可以得到

E(x_{t}) = E(\delta + \phi_{1}x_{t-1}+w_{t})  = \delta + \phi_{1}E(x_{t-1}) = \delta + \phi_{1}E(x_{t}),

从而,E(x_{t}) = \delta/(1-\phi_{1}).

Proof of 2. 从 AR(1) 的模型出发,可以得到

Var(x_{t}) = Var(\delta + \phi_{1}x_{t-1}+w_{t})

= \phi_{1}^{2}Var(x_{t-1}) +Var(w_{t}) = \phi_{1}^{2}Var(x_{t}) + \sigma_{w}^{2},

从而,Var(x_{t}) =\sigma_{w}^{2}/(1-\phi_{1}^{2}).

Proof of 3.\mu = E(x_{t}), \forall t\geq 0. 从 x_{t} 的定义出发,可以得到:

x_{t}-\mu = \phi_{1}(x_{t-1}-\mu)+w_{t}

= \phi_{1}^{h}(x_{t-h}-\mu) + \phi_{1}^{h-1}w_{t-h+1}+\cdots+\phi_{1}w_{t-1}+w_{t},

从而,

\rho_{h} = Covariance(x_{t},x_{t-h}) = \frac{E((x_{t}-\mu)\cdot(x_{t-h}-\mu))}{Var(x_{t})}=\phi_{1}^{h}.

AR(1) 模型与一维动力系统

特别的,如果假设 w_{t} 恒等于零,就可以得到 x_{t} =\delta + \phi_{1}x_{t-1} 对于所有的 t\geq 1 都成立。也就是可以写成一个一维函数的迭代公式:

f(x) = \phi_{1}x + \delta,

下面我们要计算 f^{n}(x) 的收敛性,这里的 f^{n}(x) = f\circ\cdots\circ f(x) 表示函数 fn 次迭代。

Method 1. 

通过 f(x) 的定义直接计算可以得到:

f^{n}(x) = \phi_{1}^{n}x+ \frac{1-\phi_{1}^{n}}{1-\phi_{1}}\delta,

n\rightarrow \infty,可以得到 f^{n}(x)\rightarrow \delta/(1-\phi_{1})。这与 E(x_{t}) = \delta/(1-\phi_{1}) 其实是保持一致的。

另外,如果 |\phi_{1}|>1,可以从公式上得到 f^{n}(x) \rightarrow \inftyn\rightarrow \infty

Method 2.

将原函数转换成 Lipschitz 函数的形式,i.e. 如果 |\phi_{1}|<1,那么

f(x)-\frac{\delta}{1-\phi_{1}} = \phi_{1}(x-\frac{\delta}{1-\phi_{1}})

\implies |f(x)-\frac{\delta}{1-\phi_{1}}| <\frac{1+|\phi_{1}|}{2}\cdot|x-\frac{\delta}{1-\phi_{1}}|

\implies |f^{n}(x)-\frac{\delta}{1-\phi_{1}}|<\bigg(\frac{1+|\phi_{1}|}{2}\bigg)^{n}\cdot|x-\frac{\delta}{1-\phi_{1}}|.

因为 (1+|\phi_{1}|)/2<1,我们可以得到 \lim_{n\rightarrow\infty}f^{n}(x)=\delta/(1-\phi_{1}). i.e. f^{n}(x) 趋近于 \delta/(1-\phi_{1}).

反之,如果 |\phi_{1}|>1,很容易得到

f(x)-\frac{\delta}{1-\phi_{1}} = \phi_{1}(x-\frac{\delta}{1-\phi_{1}})

\implies |f(x)-\frac{\delta}{1-\phi_{1}}| >\frac{1+|\phi_{1}|}{2}\cdot|x-\frac{\delta}{1-\phi_{1}}|

\implies |f^{n}(x)-\frac{\delta}{1-\phi_{1}}|>\bigg(\frac{1+|\phi_{1}|}{2}\bigg)^{n}\cdot|x-\frac{\delta}{1-\phi_{1}}|.

因此,在 |\phi_{1}|>1 这种条件下,f^{n}(x)\rightarrow \infty as n\rightarrow \infty. 特别地,对于一阶差分方程 x_{t} =\delta + \phi_{1}x_{t-1} 而言,如果 |\phi_{1}|>1,那么 x_{t} 的取值会越来越大,这与现实的状况不相符,所以在时间序列的研究中,一般都会假设 |\phi_{1}|<1

AR(p) 模型

按照之前类似的定义,可以把 AR(1) 模型扩充到 AR(p) 模型,也就是说:

1. AR(1) 模型形如:

x_{t}=\delta+\phi_{1}x_{t-1}+w_{t}.

2. AR(2) 模型形如:

x_{t} = \delta + \phi_{1}x_{t-1}+\phi_{2}x_{t-2}+w_{t}.

3. AR(p) 模型形如:

x_{t} = \delta + \phi_{1}x_{t-1}+\phi_{2}x_{t-2}+\cdots+\phi_{p}x_{t-p}+w_{t}.

AR(p) 模型的稳定性 --- 基于线性代数

对于 AR(2) 模型,可以假定 \delta = 0 并且忽略误差项,因此可以得到简化版的模型形如:

x_{t}= \phi_{1}x_{t-1} + \phi_{2}x_{t-2}.

写成矩阵的形式形如:

\left( \begin{array}{c} x_{t+2}  \\ x_{t+1}  \\ \end{array}\right)= \left( \begin{array}{cc} \phi_{1} & \phi_{2} \\ 1 & 0 \\ \end{array}\right) \left( \begin{array}{c} x_{t+1}  \\ x_{t}  \\ \end{array}\right) = A \left( \begin{array}{c} x_{t+1}  \\ x_{t}  \\ \end{array}\right).

求解其特征多项式则是基于 det(\lambda I - A) = 0,求解可以得到 \lambda^{2}-\phi_{1}\lambda - \phi_{2} =0,i.e. A^{k} = P diag(\lambda_{1}^{k}, \lambda_{2}^{k})P^{-1}。当 \lambda_{1}, \lambda_{2} 都在单位圆内部的时候,也就是该模型 x_{t+2} = \phi_{1}x_{t+1}+\phi_{2}x_{t} 满足稳定性的条件。

对于更加一般的 AR(p) 模型,也就是考虑 p 阶差分方程

x_{t} = \phi_{1}x_{t-1}+\phi_{2}x_{t-2}+\cdots+\phi_{p}x_{t-p}.

可以用同样的方法将其转换成矩阵的形式,那就是:

\left(\begin{array}{c} x_{t+p} \\ x_{t+p-1} \\ \vdots \\ x_{t+1}\\ \end{array}\right) = \left(\begin{array}{ccccc} \phi_{1} & \phi_{2} &\cdots & \phi_{p-1} & \phi_{p} \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ \end{array}\right) \left(\begin{array}{c} x_{t+p-1} \\ x_{t+p-2} \\ \vdots \\ x_{t} \\ \end{array}\right) = A \left(\begin{array}{c} x_{t+p-1} \\ x_{t+p-2} \\ \vdots \\ x_{t} \\ \end{array}\right)

计算 det(\lambda I - A) = 0,可以得到其特征多项式为:

\lambda^{p}-\phi_{1}\lambda^{p-1}-\phi_{2}\lambda^{p-2}-\cdots-\phi_{p}=0.

当每个特征值都在单位圆盘内部的时候,i.e. |\lambda_{i}|<1, \forall 1\leq i\leq p,该 p 阶差分方程

x_{t} = \phi_{1}x_{t-1}+\phi_{2}x_{t-2}+\cdots+\phi_{p}x_{t-p}

存在稳定性的解。

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s