百年未解的谜题:庞加莱猜想

《三联生活周刊》2006年8月17日《百年未解的谜题:庞加莱猜想》

十几年来,没有哪一届国际数学家大会,能像8月22日将在西班牙马德里召开的2006年国际数学家大会(ICM2006)这样引人注目。

早在几个月前,ICM2006的网站上,就贴出了这样的消息:“一个有100年历史的数学难题的证明,将在本届大会上宣布。”尽管做出欲说还休的姿态,但看一眼会议的日程表——8月22日17:15至18:15,里查德·汉密尔顿(Richard Hamilton),题目:庞加莱猜想。答案,已经无需再言。

一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。

1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。提出这个猜想后,庞加莱一度认为,自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。

20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特黑德(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。失之桑榆、收之东隅的是,在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。

50年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn’s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。”然而,这位聪明的希腊拓扑学家,却折在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。

这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。

一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。

1966年菲尔茨奖得主斯梅尔(Smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维和五维以上的证明,立时引起轰动。

10多年之后的1983年,美国数学家福里德曼(Freedman)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。

然而,庞加莱猜想,依然没有得到证明。

人们在期待一个新的工具的出现。

“就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。”清华大学数学系主任文志英说。

可是,解决庞加莱猜想的工具在哪里?

工具有了

里查德·汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“Playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。

1972年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。“那时候,汉密尔顿刚刚在做Ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。”丘成桐说,“于是,我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。”

Ricci流,以意大利数学家Gregorio Ricci命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究Ricci流。其中,就包括他的第一个来自中国大陆的学生曹怀东。

第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大T恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(Witten),坐在后排,俨然也是大隐隐于市的模样。

1982年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿“泡在一起”。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,今天关于庞加莱猜想的故事,是否会被改写?

在使用Ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了。

1995年,丘成桐来到北京。这次,跟他一起来的,还有汉密尔顿。做演讲的时候,丘成桐提出了口号,向汉密尔顿学习。随后,又在新建的晨兴数学中心,开设了关于Ricci流的讨论班。当时在中山大学的朱熹平,便在这段时间跟了上来。

朱熹平最早的研究方向,是与Ricci流关系并不大的偏微分方程。但是,遇到丘成桐后,他开始转型。“那段时间很痛苦的,几乎没什么文章出来。”朱熹平说,“幸好中山大学的制度,工资高,收入只有很少一部分与课题基金和论文挂钩,这才坚持下来。”在报章一度的渲染中,专心研究Ricci流和三维庞加莱猜想的朱熹平,被描述为几年没有论文发表。问及此事,朱熹平哈哈一笑:“我有那么差吗?”事实上,在很短的时间内,他就完成了转型,而且在《数学发明》等著名数学专业杂志上,也先后发表过多篇文章。

汉密尔顿提出的Ricci流,实际上可以分为两类。一种是在实流形上作的实Ricci流,它与三维庞加莱猜想的证明密切相关,另一种是在复流形上作的复Ricci流,它有很多重要的应用,但与庞加莱猜想无关。最早跟随汉密尔顿进行Ricci流研究的曹怀东,主要的方向,其实是复Ricci流。丘成桐的其他一些弟子也不例外。直到后期,部分人才开始转到实Ricci流的方向。后转型的朱熹平,因为用功、投入和耐心,没过多久,就成为国内做实Ricci流最出色的数学家,而他的实干与低调,也赢得了丘成桐格外的青睐。

然而,尽管曹怀东、朱熹平以及朱的学生陈兵龙在Ricci流的研究上取得了很多进展,但是,无论是汉密尔顿还是他们,几经周折,都没能找出解决奇点的好办法。随着拓扑手术次数的增加,奇点也会递增,最终失去控制。几年的时间里,在这个最关键的问题上,研究几乎停滞了。

就在关于Ricci流的工作陷入山重水复疑无路的情形持续了几年之后,远在圣彼得堡的一位特立独行的大胡子数学家,却在几乎不为外界所知的半隐居中,找到了解决问题的柳暗花明又一村。

格里沙!

2002年11月12日,当时在麻省理工学院数学系任教授的田刚在信箱中看到一封显示发件人为“格利高里·佩雷尔曼”(Grigori Perelman)的邮件。

标题:新的预印本
亲爱的田,
可否请你关注我发表在arXiv数学网站上的论文,DG 0211159。
摘要:我们提出了一个Ricci流的单调式,在所有的维度中成立且无需曲率假设……我们还验证了与理查德·汉密尔顿关于瑟斯顿封闭三维流形几何化猜想证明的纲领相关的一些假设,使用先前关于局部曲率下界的塌陷结果,给出了对这一猜想的证明概要。
格里沙·佩雷尔曼

三天之后的晚上,田刚写下了这封回信。

标题:回复:新的预印本

亲爱的格里沙,我正在阅读你的论文。很有意思。你是否愿意访问MIT并就这一工作做几个演讲?
田刚

佩雷尔曼的全名,是格利高里·雅科夫列维奇·佩雷尔曼,但熟悉的人,通常都叫他格里沙。生于1966年的佩雷尔曼,中学时就读的是著名的圣彼得堡第239中,这所学校,一向以高等数学和物理教学闻名。1982年,作为一名高中学生,佩雷尔曼参加了国际数学奥林匹克竞赛,并以满分的成绩获得金牌。此后,他在圣彼得堡大学获得了博士学位,接着在斯特科洛夫研究所(Steklov Institute of Mathematics)谋得职位。1992年秋天,佩雷尔曼前往美国纽约大学库朗研究所访问,随后,又于1993年春天,到了纽约州立大学的石溪分校。就是在这期间,当时就职于库朗研究所的田刚认识了佩雷尔曼。

田刚回忆道,那时候,佩雷尔曼的研究方向,并不是几何分析和Ricci流,而是度量几何。“他的思路很敏捷,做东西技术性和技巧性很强,而且很严谨。”1994年,在加州大学伯克利分校任职米勒访问学者(Miller Fellow)时,佩雷尔曼证明了著名的灵魂猜测(Soul Conjecture),为他赢得了国际声誉。此外,他还曾被邀请在国际数学家大会上做报告。大约在1994年左右,汉密尔顿到库朗研究所作了一个关于Ricci流的报告,佩雷尔曼也是听众之一。“让大家都有点惊讶的是,他居然提了一个关于奇点的问题”——如何解决手术过程中产生的奇点,正是证明庞加莱猜想中的关键一步——“现在看来,那个时候,佩雷尔曼就应该已经对解决庞加莱猜想产生了兴趣。”田刚说。

在米勒访问学者期满后,佩雷尔曼回到圣彼得堡,继续“安静地”任职于斯特科洛夫研究所。有一次,田刚遇到一位当时曾与佩雷尔曼共事的数学家,向他打听佩雷尔曼的近况。得到的消息是,佩雷尔曼几乎已经离群索居,没人知道他在做些什么。然后,就到了2002年11月。就像阿拉丁神灯中的神仙一样,佩雷尔曼现身了,而且,带着有可能是正确的庞加莱猜想的证明论文。

佩雷尔曼的第一篇论文,发表在arXiv网站上。这是一个著名的学术论文网站,最开始的用户多为物理学家,随后,数学家们也纷纷在上面发表自己的论文预印本,以供同行参照评议。不过,通常而言,发表在arXiv网站上的文章不被认为是正式发表的学术论文。

建立一个关键的椭圆形估计,应用粗细分解,来给出瑟斯顿几何化猜测的证明,这被认为是佩雷尔曼的“神来之笔”。在随后发表于网上的第二篇论文中,佩雷尔曼给出了更多的证明细节。看过论文的田刚,益发认识到这项工作的重要性。而“几乎是幸运的”,2002年12月3日,佩雷尔曼给田刚回了信,表示愿意到麻省理工学院演讲。

在一般的描述中,佩雷尔曼是一个怪人:胡子头发都很长,不修边幅,衣服经常很久不洗。今年40岁的他,至今单身,与母亲生活在一起。因为父亲去世早,佩雷尔曼事母至孝,又一种说法是,当时他在美国,曾经有很多学校邀请他任教,但佩雷尔曼坚持回国,原因就是牵挂母亲。2003年访问麻省理工学院时,他的条件之一,就是要携母同行。

不过,在田刚的眼中,佩雷尔曼的“怪”,只是远离物质化和名利世界的一种表现。在讨论学术问题时,他和最严谨的数学家一样,愿意就每一个细节认真地回答。2003年的4月7日、9日和11日,佩雷尔曼在麻省理工学院作了3个演讲,除此以外,在两周的访问时间里,他还作了一系列报告,时间超过20个小时,非常仔细地回答每一个问题。这时候,庞加莱猜想被证明的消息,开始流传出去,《纽约时报》和“数学世界”(MathWorld)网站都刊登了相应的消息。

然而,就是在麻省理工学院的讲座后,有数学家表示,佩雷尔曼的文章存在“gaps”(漏洞),无法读通。就在所有人都期待佩雷尔曼就此作出解释,补全文章的细节之时,佩雷尔曼却不置一词,翩如惊龙,自此隐居不出。两篇文章放在网上,3年多来,没有显示任何准备交由学术杂志发表的迹象。这给曾规定,必须在学术刊物上发表论文才有资格被颁给千年数学问题奖金的克雷数学研究所,出了个不大不小的难题。在接受本刊记者采访时,克雷所所长卡尔森表示,不排除为此修改规定的可能。

可是,佩雷尔曼会接受这笔奖金吗?最近的消息,是他因为不愿参与江湖中的名利之争,已经从斯特科洛夫研究所辞职,靠着10年前在美国访问时的积蓄维生,躲起来思考另一个大问题。因为佩雷尔曼曾经拒绝领取欧洲数学会颁发的一个奖项,很多人怀疑,菲尔茨奖和克雷所的百万悬赏,都未必能打动这个世外高人的心。

三驾马车

如果把庞加莱猜想比作一局棋,在汉密尔顿和佩雷尔曼下完最关键的几步后,余下的,已经是收官的工作。

不能说这个工作不重要。“高手或许一步可以看到7步后的变化,棋艺稍逊的人或许只能看到2步,剩下的5步,就是gaps。”普林斯顿大学数学系的一位教授说,“只有完完整整把每一步的走法写下来,才能算是一个完整的证明。”

而在丘成桐看来,需要做的工作,可能比补上缺失的几步还要多。“一篇论文,从2002年放到现在,3年半的时间,为什么一直没有人站出来说看得懂?关键是其中还有很多问题没有解决。”他认为的关键问题,是几何化猜想,而天降大任于斯人的对象,就是朱熹平和曹怀东。

2005年5月中旬,为了纪念一年前刚刚去世的陈省身先生,丘成桐在哈佛大学组织了一个微分几何的研讨会。朱熹平也被邀请参加这个会议。会议间隙,丘成桐问朱熹平:“做得怎么样了?”

“基本上完成了,可是要到暑假的时候才能全部写出来。”

丘成桐当即决定:“你来哈佛,专门讲这个问题。”经哈佛数学系教授表决同意,这一年9月,朱熹平来到了哈佛,向这一领域的专家讲解他和曹怀东的证明论文。每周讲3个小时,一共讲了70多个小时,这些内容与曹怀东的研究结果汇集整理之后,就是后来发表在《亚洲数学杂志》上的328页的《庞加莱猜想和几何化猜想的完全证明——汉密尔顿-佩雷尔曼Ricci流理论的应用》(A Complete Proof of the Poincar and Geometrization Conjectures – application of the Hamilton-Perelman theory of the Ricci flow)。

《亚洲数学杂志》是丘成桐主编的一本相对比较年轻的杂志。与公认排名前四的《美国数学年刊》、德国的《数学发明》、《美国数学会杂志》和瑞典的《数学学报》相比,分量上的确稍显不足。而且,《亚洲数学杂志》的两名编委,斯瑞尼瓦斯(Srinivas)和普拉萨德(Prasad)在论文发表后写给编委会的邮件中也指出过一些问题:比如,最终发表论文的题目与最初征询编委同意时的题目不一致;直到杂志出版后近半个月的6月13日,杂志全文仍无法下载,与以往惯例不符;论文的审稿没有遵循复杂的程序,留给编委评论的时间也只有3天。之所以会存在这些问题,丘成桐的解释是——“竞争”。虽然在程序上或有可商榷之处,但丘成桐敢于用自己的学术声誉为朱熹平和曹怀东的工作担保:“完完整整,每一步写得清清楚楚,第一次给出了全部的证明,可以用来做教科书。”在接受《科学时报》记者采访时,丘成桐说。而汉密尔顿,则给出了如下的评价:“曹怀东与朱熹平最近在佩雷尔曼与前人的工作基础上,给出了关于庞加莱猜想证明的一个完整与详细的描述。我很高兴这两位Ricci流领域里的杰出学者所写的这篇文章。他们引入了自己的新思想,使得证明变得更容易理解。”

的确,竞争是激烈的。就在《亚洲数学杂志》6月号出版前的5月25日,密歇根大学的布鲁斯·克莱纳(Bruce Kleine)和约翰·洛特(John Lott),把名为“佩雷尔曼论文注记”(Notes on Perelman’s Papers)的192页文章放到了arXiv网站上。这是对他们2004年关于佩雷尔曼部分工作的注记的修改和补充。

比这再早一些时间,2004年9月,田刚和哥伦比亚大学的拓扑学家约翰·摩根(John Morgan)决定合作,在田刚之前给学生开讨论班研读佩雷尔曼论文时留下的笔记的基础上,撰写一部关于庞加莱猜想的书。这部书稿,得到了克雷数学研究所的著述专项资助(Book Fellow)。2006年5月,摩根和田刚合作完成的书稿提交给了克雷数学研究所,并在7月25日把这本473页的书放到了arXiv网站上。而此时,国际数学家大会已确定,将由摩根在8月24日作一个关于庞加莱猜想的公众报告。

3个小组,3驾马车,彼此的差异在哪里?在接受本刊记者采访时,摩根说:“2004年8、9月间,我和克莱纳、洛特以及田刚和其他一些人共同参加了一次学术会议。我们研读了佩雷尔曼的第二篇文章。这之后,我认为,我们彼此都觉得佩雷尔曼了解问题所在。我和田刚对庞加莱猜想感兴趣,并且给出了我们认为的完整的证明,而克莱纳和洛特、曹怀东和朱熹平的文章,关心的是整个几何化猜想的问题,并把问题的范围缩小到Shioya-Yamaguchi的工作的范围内。而这项工作,反过来要借助佩雷尔曼自1990年以来未发表的文章。我的感觉是,在最后几步中所引用的数据,可能需要进行更彻底细致的检查。”不过,在克雷研究所所长卡尔森的眼中,事情,也许并没有那么复杂。“克莱纳和洛特,曹怀东和朱熹平,摩根和田刚,3个小组中的每一个都对检验佩雷尔曼的工作做出了重要的贡献。能够有3个独立的数学家小组来做这件事,当然比只有一个小组要好得多了。”

而且,所有的竞争,仿佛只是让佩雷尔曼最终获得菲尔茨奖的成算,变得更大。

如果一切如普遍的预料,那么,在数学论文日益冗长繁复的今日,佩雷尔曼将创下一个新的纪录:可能为他赢来数学家最高荣誉的两篇网上论文,分别只有22页和39页。

“大张旗鼓地面对一个众人皆知的难题,将会冒很大的风险。”1982年的菲尔茨奖得主阿兰·孔曾经在一篇论文的序言中如此写道,“以后人们记住他的将是他的失败,而不是别的。随着年龄的增大,我认识到‘安全地’到达生命的终点是一种很好的自我保护的选择。”对于在过去20年的时间里一直致力于攀登数学世界里的珠穆朗玛峰——黎曼猜想——的阿兰·孔来说,这段话,更像是一段幽默的自嘲。庞加莱猜想的故事,也许会在几个星期、几个月或者几年内迎来一个圆满的——或许也是出人意料的——结局,但它所开拓的疆域,和数学世界广袤无垠充满挑战与乐趣的地平线,还将无穷无尽的向远方延伸。

故事,永远在继续……-

忆皖雄同学

作者:郑方阳,重庆师范大学数学科学学院教授。

第一次见到皖雄是 1982 年的秋天,在北京的中国科学院研究生院。这一年数学所招了 18 名硕士生,其中 5 人来自于科大 78 级,包括皖雄和江明昌,王建荣,苏宇,耿晓。当时科大的同学普遍有“年龄小、基础好”的特点,皖雄入学时还不满 19 岁。第一年住在玉泉,除英语按程度分班之外,基本上修同样的课,第二年开始搬回中关村数学所背后的小楼,大家按各自选择的方向分到不同的教研室。数学所因为华老的缘故,当时数论和函数论是最热门的选择。成绩突出的皖雄和管鹏飞去了函数论组,跟陆啓铿,钟家庆等老师学习多复变。我和吴宏友去了几何组,和上一届的游志平,李明一起在王启明、虞言林老师的指导下学习微分几何。

在中科院两年的同学生涯里,皖雄留给我的印象,一是成绩好,我们当时的学号是按招生考试的成绩来排序的,皖雄的学号我记得不是第一就是第二。科大同学基础很扎实,像代数拓扑、多复变之类的高年级课程,除科大北大等少数院校之外,我们其它学校来的同学大都没有接触过。当时大家的学习积极性都很高,同学们互相切磋互相帮助,印象里每次有同学向皖雄请教问题时他都十分乐于助人,分享他的知识和经验。对皖雄的印象之二是他的性格很温和,很安静,从没见到过他与人争辩或红脸。之三是他对象棋的着迷,当时班上同学中好像没有对手,因此他经常一个人自己研究棋谱,自己跟自己下。皖雄的另一个爱好是古典文学,记得他当时跟我们讲起《水浒》里的情节,连半文半白的台词都一字不差,给我留下很深的印象。

我于 1984 年秋来到加州大学圣迭戈分校,跟随丘先生学习,第二年春皖雄也来了,我们成了同门师兄弟。丘先生在圣迭戈带了一大批中国学生,开启了大规模为祖国培养人才的模式。当时我们同门同学中有清华的曹怀东,王文祥,北大的田刚,复旦的李骏,董瑞涛,杭大的季理真,科学院的皖雄,肖兵等十余个学生,搞得系里有美国研究生酸味十足地问:你们讨论班是用普通话还是广东话?当时的圣迭戈,教授中有丘先生,Rick Schoen, Richard Hamilton, Mike Freedman 等大师,更有一大批前来短期访问的几何和拓扑学家,可以说是世界几何学界的热点和中心之一。中国同学中除了丘先生的学生,还有跟其他老师的林晓松,罗锋,贺正需,张东,白重恩等等,非常热闹。1987 年,丘先生调工作,我们又跟随他转学去了哈佛。记得田刚是 88 年毕业,李骏和我是 89 年,皖雄是 90 年。因此在波士顿我们又同学了两年。现在回想起来,在人生最美好的年龄段,我和皖雄同学了 6 年,的确是缘分使然。

1982 年,Hamilton 运用热方程的思想,开创了黎曼流形上 Ricci 流的研究,证明了紧流形上短时间解的存在性,并以此为工具,证明了任何具正 Ricci 曲率的三维单连通紧黎曼流形必微分同胚于三维球面。丘先生以其天才般的几何直观,一直向我们强调 Ricci 流的重要潜力,并建议他的学生曹怀东,周培能,施皖雄等人专攻 Ricci 流,他们成为了继 Hamilton 之后研究 Ricci 流的主力军。

皖雄的一项重要贡献是将 Ricci 流的研究发展到了非紧完备流形上,他在曲率有界的条件下,证明了短时间解的存在性。从紧到非紧,技术上的难度是巨大的,需要高超的技巧以及非凡的定力。皖雄的超级淡定的性格和一丝不苟的作风使得他特别适合这项挑战。同学们大家都知道,皖雄平时的草稿纸都打得比我们多数人的笔记还要工整。他的办公桌上,看过的报纸都整整齐齐地码放好。记得有一次,当皖雄得到了主要的估计式后在讨论班上报告时,他在黑板上写下了长长的公式,足足有二十多项,然后在大家的惊异中说道,这些都是“好项”,另外还有十余个“坏项”需要一一处理。这次讨论班给我留下了极深的印象。据皖雄自己说,当年 Huisken 来访问丘先生并报告他关于平均曲率流的著名结果时,其完全不怕麻烦的精益求精的作风使皖雄很受震撼。丘先生对自己的学生向来期望值较高,不轻易表扬,但对皖雄的工作给予了很高的评价。2003 年,俄国数学家 Perelman 运用 Ricci 流的方法解决了著名的 Poincaré 猜想,其中皖雄的工作也起到了奠基性的作用。

皖雄是纯粹的数学家,对数学研究充满挚爱,教学等工作也十分认真敬业,除此之外,淡泊名利,无欲无求。记得在圣迭戈时,我们都对开车很有兴趣,圣迭戈公共交通的缺乏也使得开车成为出行的必须。但皖雄为了省时间,拒绝学车。平时去中国店买菜,也只是请同学们带面条,酱油等少数必需品,生活上做到了极简。不过同学们互相之间都很关心,田刚和曹怀东年长我们几岁,怕皖雄的饮食过于单调缺乏营养,常常给他带些蔬菜。我印象最深的是,在圣迭戈和波士顿,每次同学们组织派对,都要邀请皖雄,经常是由董瑞涛或我出面,因为我和皖雄是数学所的同学,而董瑞涛本科是科大,与皖雄同学。派对上因为皖雄好静的性格,大家怕他落单,通常都是由李骏和他下象棋,因为其他人的棋艺完全跟不上。李骏是急性子,遇上了长考派的皖雄,只能站起来走来走去,像极了一只来回踱步的老虎。

皖雄毕业后去了普渡,那里地处美国中西部,人烟稀少,中国人尤其少。我后来想,骤然离开了热闹的师门,多半让皖雄在心理上感觉到了孤独,不过我们当时都没有意识到这一点。皖雄从 97 年前后开始了隐居,失联了好一段时间。后来他科大的同学在华盛顿特区找到了他,大家才又重新得知了他的下落。今年国庆节,骤闻皖雄过世的噩耗,十分意外,因为他还这么年轻而且身体向来健康。历史上数学家们大多长寿,但也不乏英年早逝者,可能是要看上天安排他们来的事情做完了没有。皖雄的研究成果,因其在庞加莱/几何化猜想和丘成桐单值化猜想中所起到的重要作用,在数学史上留下了痕迹,这是他最在意的事,也是他毕生的追求。


同学:郑方阳
二零二一年十月二日于重庆

悼念我的学生施皖雄 — 丘成桐

十月一日那天,胡森打电话给我,说施皖雄早上八时去世了。听到这个消息,心中感到莫名的悲恸。

我自七十年代出道,以几何分析为世所知。我和学生 Richard Schoen 以及众多朋友花了十年工夫,完成了现代几何分析的奠基工作。可惜我的中国学生在分析方面的成就,比不上我早期的美国和澳大利亚的学生,只有施皖雄和王慕道是例外。但他们都受到同门的排挤,尤其以施皖雄为最,半生潦倒,才不得展,郁郁而终。

记得友人 Richard Hamilton 1978 秋天在康乃尔大学和我讨论,学习调和映射理论中 J. Eells 和 J.H. Sampson 的工作,并在度量空间寻找类似的几何流。不久,里奇流的概念就诞生了。由于当时没有适当的估值方法,没有办法再进一步。

1982 年,Hamilton 打电话到普林斯敦研究所,告诉我他的最新结果。对于里奇曲率为正的情况,他找到了完美的估值。我大吃一惊,立刻邀请他来普林斯敦,详细解释他漂亮的工作。我当时有六个硏究生,我即时让其中三人做有关里奇流的工作。他们分别是曹怀东、板东重稔(日本人)和 Bennett Chow。前两位的论文是 Kähler 流形里的里奇流。板东做的刚性定理,以后被莫毅明推广。曹怀东做的 Kähler 里奇流,原意是给出我和萧荫堂证明的 Frankel 猜想的另一证明。曹怀东没有完成这个使命,但却证明了 Kähler 里奇流的整体存在性,后人都需要用到这个理论。至于重证 Frankel 猜想,直到如今,里奇流还没有给出完美的成果,尽管田刚多次在一些假设上来完成这个工作(假如我们同意 Frankel 猜想成立的话,这些假设是成立的。)

1984 年,我离开普林斯敦,到加州大学圣地牙哥分校任教。次年即有十五名中国学生来当我的博士生,施皖雄是其中一位。他本来是中国科学院钟家庆的硕士生。他的分析能力比较其他中国学生强,所以我给他博士论文的题目是硏究非紧空间上的里奇流。我还记得,1986 年秋天我带着大伙去访问 Texas Austin。我让田刚学习在物理系的友人 Philip Candelas 的工作。他倒是勤奋去读了 Candelas 还没有发表的文章,得到不少好处。至于施皖雄,我们开了很多讨论班,连星期六和星期日都在硏究估值问题。他虽然是刚开始学习,但是学问突飞猛进。不久,我的朋友都留意到我这个学生了。

施皖雄(前排右)与导师钟家庆(前排中)

1987 年,我决定接受哈佛大学的聘书,由加州迁到波士顿。根据和哈佛大学的合约,我可以带领四名圣地牙哥的学生到哈佛去。我挑选了李骏、施皖雄、田刚和郑方阳。施皖雄 1990 年得到博士学位,论文极为出色,行内众口争传,深得 Hamilton 的喜爱。很多名校都争取他去,Berkeley 的伍鸿熙教授曾多次打电话来,问施皖雄可否去 Berkeley。结果发现施皖雄在没有征询我的意见前,自己决定不去名校。但他申请了加州大学圣地牙哥分校,Hamilton 在那里当教授,又特别了解他的工作,圣地牙哥破例聘请一个刚毕业的学生做 tenure track 的助理教授。直到今天,该校数学系的助理教授都能升等为长聘教授。施皖雄也申请了普渡大学,那里的莫宗坚是研究代数的,我也认识,不知道他用什么甜言蜜语,说服了施放弃了圣地牙哥而选择普渡。

Hamilton 完成正里奇曲率的里奇流后,我建议他用里奇流来破解庞卡莱猜想,其中关键在于控制里奇流中可能出现的奇点。我建议他把我和 Peter Li 的有关工作推广到里奇流上去。这项工作极为复杂,没有想到他居然完成了。

Hamilton 的工作在迈进。1995 年,我在哈佛数学系作报告,指出里奇流将要在不久的将来,解决由 Thurston 提出的有关三维空间几何分类的猜想,同时也解决庞卡莱猜想。我提议邀请 Hamilton 来哈佛访问一年,解释里奇流的重大进展,大学同意了。翌年,Hamilton 来了。在他访问期间,给了很多精采的讲演。由于哈佛大学一般不聘请年纪超过五十岁的教授,我企图说服 MIT 数学系去聘请 Hamilton,可惜还是不行。Daniel Stroock 告诉我的内幕消息是,田刚虽然到 MIT 不久,但要表示他的权威性,他做了一个介绍,说 Hamilton 只懂得一个方程,前途不大,不值得聘请云云。
 
偏偏这时,普渡大学正在考虑施皖雄的终身教职, 而普渡大学不容许自己的导师写介绍信,当时全球做 Kähler 流形的几何分析的学者不会超过五个人,田刚是其中一个。田刚这样的看法,做成了普渡大学不可逆转的裁决。Hamilton 的介绍信一般很晚才寄出,据他说他将普渡大学臭骂了一顿,但是无济于事。当年游说施皖雄应聘的莫宗坚也没有说出一句挽救的话。其实当时施皖雄已完成了几篇极有分量的论文,比同系研究几何的同事的工作来得重要。无论如何,普渡大学没有充分的理由不给予施皖雄终身职位。
 
华人学者在美国的互动,由此可见一斑。此后施皖雄拒绝了其他地方的聘书。而讽刺的是,当年瞧不起里奇流的人,在 Perelman 的工作出来以后,却摇身一变,成为里奇流的专家了。
 
今天,天妒英才,皖雄不幸去世了。我记下这段历史,好让大家知道皖雄的学问是一流的。他在里奇流的工作,比这几年来个别哗众取宠的做里奇流的中国学者来得重要。

现在挑选施皖雄几篇论文如后,可以注意的是:微分几何杂志(Journal of Differential Geometry,JDG)是几何文章最重要的杂志,发表过名家如 Freedman,Donaldson,Witten 等人的成名作。在 1997 年,就是施皖雄离开普渡大学那一年,微分几何杂志发表了施皖雄一篇长达一百多页的长文 [8],假如这篇文章不是特别重要,微分几何杂志是不会发表这样长的文章的。这件事可以作为一个客观的判断:施皖雄是一个杰出的几何学家,在几何流这门学问上会受到数学历史的尊重,排挤他的同行们的工作远逊于他,他受到不公平的待遇,但是几何分析的历史会记得他的工作。


—— 丘成桐

2021.10.03

施皖雄发表的论文

[1] Wan-Xiong Shi, Complete noncompact three-manifolds with nonnegative Ricci curvature, Journal of Differential Geometry 29 (1989), no.2, 353–360.

[2] Wan-Xiong Shi, Deforming the metric on complete Riemannian manifolds, Journal of Differential Geometry 30 (1989), no.1, 223–301.

[3] Wan-Xiong Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, Journal of Differential Geometry 30 (1989), no.2, 303–394.

[4] Wan-Xiong Shi, Ricci deformation of the metric on complete noncompact Kähler manifolds, Ph.D. Thesis, Harvard University (1990).

[5] Wan-Xiong Shi, Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature, Bulletin of the American Mathematical Society 23 (1990), 437-440.

[6] Wan-Xiong Shi and S.-T. Yau, Harmonic maps on complete noncompact Riemannian manifolds, in: A Tribute to Ilya Bakelman (College Station, TX, 1993), pp.79–120, Discourses Math. Appl., No.3, Texas A & M Univ., College Station, TX, (1994).

[7] Wan-Xiong Shi and S.-T. Yau, A note on the total curvature of a Kähler manifold, Mathematical Research Letters 3 (1996), 123–132.

[8] Wan-Xiong Shi, Ricci flow and the uniformization on complete noncompact Kähler manifolds, Journal of Differential Geometry 45 (1997), no.1, 94–220.

[9] Wan-Xiong Shi, A uniformization theorem for complete Kähler manifolds with positive holomorphic bisectional curvature, The Journal of Geometric Analysis 8 (1998), 117–142.


相关背景:

施皖雄博士2021年9月30日逝于美国华盛顿特区去世,享年58岁。施皖雄是中国科学技术大学数学系781校友、哈佛大学博士。这位英年早逝的数学英才为Ricci流解决庞加莱猜测和几何化猜测做出了基础性贡献。

《三联生活周刊》2006年8月17日《百年未解的谜题:庞加莱猜想》

丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为…和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,今天关于庞加莱猜想的故事,是否会被改写?

汉密尔顿信件对施皖雄评价

丘还有一些跟随他从普林斯顿到圣地亚哥分校的非常杰出的学生,特别是曹怀东,周培能和施皖雄三人。丘成桐鼓励他们研究瑞奇流,他们对这个领域也作出了非常重要的贡献。…施皖雄开创了完整非紧流形上瑞奇流的研究,在许多漂亮的论证基础上他证明了瑞奇流的局部微商估计。奇异点的放大通常会产生非紧致解,证明放大极限的收敛性总是要依赖于施皖雄的微商估计,所以施皖雄的工作是佩雷尔曼和我使用的所有极限论证方法的关键。

汉密尔顿致丘成桐代理律师的信(转载于中国科学院官网,2006.9.30)

光明日报(2006.6.21)《所有中国人都应为他们感到骄傲》

汉密尔顿高度评价了陈省身、丘成桐、施皖雄等中国数学家的贡献,他说:“所有中国人都应该为中国数学家在微分几何领域所取得的成就,和对庞加莱猜想的贡献感到骄傲。”

施皖雄,福建泉州人,1963年10月6日生,2021年9月30日下午8时零7分(当地时间)在美国华盛顿特区去世,享年58岁。 施皖雄1978年10月从福建泉州五中考入中国科学技术大学数学系,1982年7月获得学士学位。同年考入中国科学院数学研究所,师从陆启铿院士和钟家庆教授,1985年获得硕士学位。1985年赴美留学,始在加州大学圣地亚哥分校,1987年起在哈佛大学,师从数学大师丘成桐院士,1989年获得哈佛大学博士学位。1989年起在普渡大学数学系任教,1997年离职,后移居华盛顿特区。施皖雄在微分几何的几何流研究中做出了突破性的工作,建立了非紧空间上里奇(Ricci)流的基本理论,为里奇流解决庞加莱猜测和几何化猜测做出了基础性贡献。 施皖雄为人友善,生活淡泊,与世无争。他酷爱数学,在数学领域做出了突出贡献,是后辈学习的楷模。

施皖雄部分亲友

2021.10.1.