Category Archives: Uncategorized

254A announcement: Analytic prime number theory

What's new

In the winter quarter (starting January 5) I will be teaching a graduate topics course entitled “An introduction to analytic prime number theory“. As the name suggests, this is a course covering many of the analytic number theory techniques used to study the distribution of the prime numbers $latex {{mathcal P} = {2,3,5,7,11,dots}}&fg=000000$. I will list the topics I intend to cover in this course below the fold. As with my previous courses, I will place lecture notes online on my blog in advance of the physical lectures.

The type of results about primes that one aspires to prove here is well captured by Landau’s classical list of problems:

  1. Even Goldbach conjecture: every even number $latex {N}&fg=000000$ greater than two is expressible as the sum of two primes.
  2. Twin prime conjecture: there are infinitely many pairs $latex {n,n+2}&fg=000000$ which are simultaneously prime.
  3. Legendre’s conjecture:…

View original post 3,947 more words

MA 1505 Tutorial 1: Derivative

Definition of Derivative:

f^{'}(x)=\lim_{\Delta x\rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

Rule: Assume f(x) and g(x) are two differentiable functions, the basic rules of derivative are

(f\pm g)^{'}(x)=f^{'}(x)\pm g^{'}(x)

(f\cdot g)^{'}(x)= f^{'}(x) g(x) + f(x)g^{'}(x)


(f\circ g)^{'}(x)=f^{'}(g(x))g^{'}(x)

Definition of Critical Point: x_{0} is called a critical point of f(x), if f^{'}(x_{0})=0.

If f^{'}(x)>0 on some interval I, then f(x) is increasing on the interval I. Similarly, if f^{'}(x)<0 on some interval I, then f(x) is decreasing on the interval I.

Tangent Line: Assume f(x) is a differentiable function on the interval I, then the tangent line of f(x) at the point x_{0}\in I is y-f(x_{0})=f^{'}(x_{0})(x-x_{0}), where f^{'}(x_{0}) is the slope of the tangent line.

Derivative of Parameter Functions: Assume y=y(t) and x=x(t), the derivative y^{'}(x) is y^{'}(t)/x^{'}(t), because the Chain Rule of derivatives.

Question 1. Calculate the tangent line of the curve x^{\frac{1}{4}} + y^{\frac{1}{4}}=4 at the point (16,16).

Method (i). Take the derivative of the equation x^{\frac{1}{4}}+y^{\frac{1}{4}}=4 at the both sides, we get

\frac{1}{4}x^{-\frac{3}{4}} + \frac{1}{4}y^{-\frac{3}{4}} y^{'}=0.

Assume x=y=16, we have the derivative y^{'}(16)=-1. That means the tangent line of the curve at the point (16,16) is y-16=-(x-16). i.e. y=-x+32.

Method (ii). From the equation, we know y(x)=(4-x^{\frac{1}{4}})^{4} , then calculating the derivative directly. i.e.

y^{'}(x)=4(4-x^{\frac{1}{4}})^{3}\cdot (-1)\cdot \frac{1}{4}x^{-\frac{3}{4}}

Therefore, y^{'}(16)=-1.

Method (iii). Making the substitution x=4^{4}\cos^{8}\theta, y=4^{4}\sin^{8}\theta, then (16,16) corresponds to \theta=\pi/4. From the derivative of the parameter functions, we know

\frac{dy}{dx}= \frac{dy/d\theta}{dx/d\theta}=\frac{4^{4}\cdot 8\sin^{7}\theta\cdot \cos\theta}{4^{4}\cdot 8\cos^{7}\theta\cdot (-\sin\theta)}

If we assume \theta=\pi/4, then y^{'}(16)=-1.

Method (iv). Geometric Intuition. Since the equation x^{\frac{1}{4}}+y^{\frac{1}{4}}=4 is a symmetric graph with the line y=x, and (16,16) is also on the symmetric line. Therefore, the slope of the curve at the point (16,16) is -1. Hence, the tangent line is y=-x+32.

Question 2. Let y=(1+x^{2})^{-2} and x=\cot \theta. Find dy/dx and express your answer in terms of \theta.

Method (i). y=\frac{1}{1+x^{2}}= \sin^{2}\theta

\frac{dy}{dx}=\frac{dy/d\theta}{dx/d\theta} = \frac{2\sin\theta \cos \theta}{-\sin^{-2}\theta}= - \sin^{2}\theta\sin2\theta.

Method (ii). \frac{dy}{dx}=-\frac{2x}{(1+x^{2})^{2}} = -\frac{2\cot \theta}{(1+\cot^{2}\theta)^{2}}=-\sin^{2}\theta\sin 2\theta.

Manjul Bhargava and his 290 theorem

Fight with Infinity

ICM 2014今天在韩国首尔召开。正如之前所预测的那样,Manjul Bhargava获得了2014年的Fields Medal. 一同获奖的还有Artur Avila, Martin HairerMaryam Mirzakhani.


本文将介绍获奖者Manjul Bhargava的一项“初等”工作:简化了Conway-Schneeberger 15定理的证明,并进一步证明了Conway的290猜想。

我们感兴趣的是在整格$latex Bbb Z^n$上取整值的$latex n$元多项式$latex f$。若$latex f$是齐次的,这相当于要求$latex f$的系数为整数。对可表示集$latex R_f:=f(Bbb N^n) subset Bbb Z$(约定$latex 0 in Bbb N$)的研究贯穿了整个数论史:
(1.1)Fermat集中研究了用2元2次整系数多项式表示素数$latex p$的问题,并发现
若$latex f(x,y)=x^2+y^2$,则$latex p in R_f$当且仅当$latex p$形如$latex 4a+1$;
若$latex f(x,y)=x^2+2y^2$,则$latex p in R_f$当且仅当$latex p$形如$latex 8a+1$或$latex 8a+3$;
若$latex f(x,y)=x^2-2y^2$,则$latex p in R_f$当且仅当$latex p$形如$latex 8a+1$或$latex 8a+7$;
若$latex f(x,y)=x^2+3y^2$,则$latex p in R_f$当且仅当$latex p$形如$latex 3a+1$;
若$latex f(x,y)=x^2+5y^2$,则$latex p in R_f$当且仅当$latex p$形如$latex 20a+1$或$latex 20a+9$;
(Fermat二平方和定理, 由Euler证明) 若$latex f(x,y)=x^2+y^2$,则自然数$latex k in R_f$当且仅当$latex k$的奇素因子(若有)均形如$latex 4a+1$。
(Lagrange四平方和定理) 若$latex f(x,y,z,w)=x^2+y^2+z^2+w^2$,则$latex R_f=Bbb N$。
(Legendre三平方和定理) 若$latex f(x,y,z)=x^2+y^2+z^2$,则自然数$latex k in R_f$当且仅当$latex k$不能写成$latex 2^{2a}(8b+7)$的形式。
(1.3) 平方数有一类推广,即所谓的多边形数:填满正多边形内部的点的个数。
(Gauss三角数定理,“Eureka定理”)令$latex f(x,y,z)=frac{x(x+1)}{2}+frac{y(y+1)}{2}+frac{z(z+1)}{2}$,则$latex R_f=Bbb N$。
(Fermat多边形数定理,由Cauchy证明) 任意自然数均可表示为不超过$latex n$个$latex n$边形数之和。
(Waring问题,由Hilbert解决) 给定$latex k geq 2$,$latex f=sum_{1 leq i leq g} x_i^k$。对于充分大的$latex g$,$latex R_f=Bbb N$。
关于$latex g$的下确界$latex…

View original post 234 more words

Khot, Osher, Griffiths

What's new

In addition to the Fields medallists mentioned in the previous post, the IMU also awarded the Nevanlinna prize to Subhash Khot, the Gauss prize to Stan Osher (my colleague here at UCLA!), and the Chern medal to Phillip Griffiths. Like I did in 2010, I’ll try to briefly discuss one result of each of the prize winners, though the fields of mathematics here are even further from my expertise than those discussed in the previous post (and all the caveats from that post apply here also).

Subhash Khot is best known for his Unique Games Conjecture, a problem in complexity theory that is perhaps second in importance only to the $latex {P neq NP}&fg=000000$ problem for the purposes of demarcating the mysterious line between “easy” and “hard” problems (if one follow standard practice and uses “polynomial time” as the definition of “easy”). The $latex {P neq…

View original post 1,244 more words

Lindenstrauss, Ngo, Smirnov, Villani

What's new

As is now widely reported, the Fields medals for 2010 have been awarded to Elon Lindenstrauss, Ngo Bao Chau, Stas Smirnov, and Cedric Villani. Concurrently, the Nevanlinna prize (for outstanding contributions to mathematical aspects of information science) was awarded to Dan Spielman, the Gauss prize (for outstanding mathematical contributions that have found significant applications outside of mathematics) to Yves Meyer, and the Chern medal (for lifelong achievement in mathematics) to Louis Nirenberg. All of the recipients are of course exceptionally qualified and deserving for these awards; congratulations to all of them. (I should mention that I myself was only very tangentially involved in the awards selection process, and like everyone else, had to wait until the ceremony to find out the winners. I imagine that the work of the prize committees must have been extremely difficult.)

Today, I thought I would mention one…

View original post 3,867 more words

Avila, Bhargava, Hairer, Mirzakhani

What's new

The 2014 Fields medallists have just been announced as (in alphabetical order of surname) Artur Avila, Manjul Bhargava, Martin Hairer, and Maryam Mirzakhani (see also these nice video profiles for the winners, which is a new initiative of the IMU and the Simons foundation). This time last year, I wrote a blog post discussing one result from each of the 2010 medallists; I thought I would try to repeat the exercise here, although the work of the medallists this time around is a little bit further away from my own direct area of expertise than last time, and so my discussion will unfortunately be a bit superficial (and possibly not completely accurate) in places. As before, I am picking these results based on my own idiosyncratic tastes, and are not necessarily the “best” work of these medallists.

Artur Avila works in dynamical systems and in the…

View original post 1,412 more words

245A: Problem solving strategies

What's new

This is going to be a somewhat experimental post. In class, I mentioned that when solving the type of homework problems encountered in a graduate real analysis course, there are really only about a dozen or so basic tricks and techniques that are used over and over again. But I had not thought to actually try to make these tricks explicit, so I am going to try to compile here a list of some of these techniques here. But this list is going to be far from exhaustive; perhaps if other recent students of real analysis would like to share their own methods, then I encourage you to do so in the comments (even – or especially – if the techniques are somewhat vague and general in nature).

(See also the Tricki for some general mathematical problem solving tips.  Once this page matures somewhat, I might migrate it to the…

View original post 6,008 more words