Category Archives: 数学科普

Fractals – A Very Short Introduction

Excerpt From: Falconer, Kenneth. “Fractals: A Very Short Introduction (Very Short Introductions).” iBooks.

Chapter 7
A little history

Geometry, with its highly visual and practical nature, is one of the oldest branches of mathematics. Its development through the ages has paralleled its increasingly sophisticated applications. Construction, crafts, and astronomy practised by ancient civilizations led to the need to record and analyse the shapes, sizes, and positions of objects. Notions of angles, areas, and volumes developed with the need for surveying and building. Two shapes were especially important: the straight line and the circle, which occurred naturally in many settings but also underlay the design of many artefacts. As well as fulfilling practical needs, philosophers were motivated by aesthetic aspects of geometry and sought simplicity in geometric structures and their applications. This reached its peak with the Greek School, notably with Plato (c 428–348 BC) and Euclid (c 325–265 BC), for whom constructions using a straight edge and compass, corresponding to line and circle, were the essence of geometric perfection.

As time progressed, ways were found to express and solve geometrical problems using algebra. A major advance was the introduction by René Descartes (1596–1650) of the Cartesian coordinate system which enabled shapes to be expressed concisely in terms of equations. This was a necessary precursor to the calculus, developed independently by Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1714) in the late 17th century. The calculus provided a mathematical procedure for finding tangent lines that touched smooth curves as well as a method for computing areas and volumes of an enormous variety of geometrical objects. Alongside this, more sophisticated geometric figures were being observed in nature and explained mathematically. For example, using Tycho Brahe’s observations, Johannes Kepler proposed that planets moved around ellipses, and this was substantiated as a mathematical consequence of Newton’s laws of motion and gravitation.

The tools and methods were now available for tremendous advances in mathematics and the sciences. All manner of geometrical shapes could be analysed. Using the laws of motion together with the calculus, one could calculate the trajectories of projectiles, the motion of celestial bodies, and, using differential equations which developed from the calculus, more complex motions such as fluid flows. Although the calculus underlay Graph of a Brownian process8I to think of all these applications, its foundations remained intuitive rather than rigorous until the 19th century when a number of leading mathematicians including Augustin Cauchy (1789–1857), Bernhard Riemann (1826–66), and Karl Weierstrass (1815–97) formalized the notions of continuity and limits. In particular, they developed a precise definition for a curve to be ‘differentiable’, that is for there to be a tangent line touching the curve at a point. Many mathematicians worked on the assumption that all curves worthy of attention were nice and smooth so had tangents at all their points, enabling application of the calculus and its many consequences. It was a surprise when, in 1872, Karl Weierstrass constructed a ‘curve’ that was so irregular that at no point at all was it possible to draw a tangent line. The Weierstrass graph might be regarded as the first formally defined fractal, and indeed it has been shown to have fractal dimension greater than 1.

In 1883, the German Georg Cantor (1845–1918) wrote a paper introducing the middle-third Cantor set, obtained by repeatedly removing the middle thirds of intervals (see Figure 44). The Cantor set is perhaps the most basic self-similar fractal, made up of 2 scale copies of itself, although of more immediate interest to Cantor were its topological and set theoretic properties, such as it being totally disconnected, rather than its geometry. (Several other mathematicians studied sets of a similar form around the same time, including the Oxford mathematician Henry Smith (1826–83) in an article in 1874.) In 1904, Helge von Koch introduced his curve, as a simpler construction than Weierstrass’s example of a curve without any tangents. Then, in 1915, the Polish mathematician Wacław Sierpiński (1882–1969) introduced his triangle and, in 1916, the Sierpiński carpet. His main interest in the carpet was that it was a ‘universal’ set, in that it contains continuously deformed copies of all sets of ‘topological dimension’ 1. Although such objects have in recent years become the best-known fractals, at the time properties such as self-similarity were almost irrelevant, their main use being to provide specific examples or counter-examples in topology and calculus.

It was in 1918 that Felix Hausdorff proposed a natural way of ‘measuring’ the middle-third Cantor set and related sets, utilizing a general approach due to Constantin Carathéodory (1873–1950). Hausdorff showed that the middle-third Cantor set had dimension of log2/log3 = 0.631, and also found the dimensions of other self-similar sets. This was the first occurrence of an explicit notion of fractional dimension. Now termed ‘Hausdorff dimension’, his definition of dimension is the one most commonly used by mathematicians today. (Hausdorff, who did foundational work in several other areas of mathematics and philosophy, was a German Jew who tragically committed suicide in 1942 to avoid being sent to a concentration camp.) Box-dimension, which in many ways is rather simpler than Hausdorff dimension, appeared in a 1928 paper by Georges Bouligand (1889–1979), though the idea underlying an equivalent definition had been mentioned rather earlier by Hermann Minkowski (1864–1909), a Polish mathematician known especially for his work on relativity.

For many years, few mathematicians were very interested in fractional dimensions, with highly irregular sets continuing to be regarded as pathological curiosities. One notable exception was Abram Besicovitch (1891–1970), a Russian mathematician who held a professorship in Cambridge for many years. He, along with a few pupils, investigated the dimension of a range of fractals as well as investigating some of their geometric properties.

Excerpt From: Falconer, Kenneth. “Fractals: A Very Short Introduction (Very Short Introductions).” iBooks.

 

Advertisements

Notes on Shape of Inner Space

Shape of Inner Space

shing-tung_yau_nadis_s._the_shape_of_inner_space

String Theory and the Geometry of the Universe’s Hidden Dimensions

Shing-Tung YAU and Steve NADIS

Chapter 3: P.39

My personal involvement in this area began in 1969, during my first semester of graduate studies at Berkeley. I needed a book to read during Chrismas break. Rather than selecting Portnoy’s Complaint, The Godfather, The Love Machine, or The Andromeda Strain-four top-selling books of that year-I opted for a less popular title, Morse Theory, by the American mathematician John Milnor. I was especially intrigued by Milnor’s section on topology and curvature, which explored the notion that local curvature has a great influence on geometry and topology. This is a theme I’ve pursued ever since, because the local curvature of a surface is determined by taking the derivatives of that surface, which is another way of saying it is based on analysis. Studying how that curvature influences geometry, therefore, goes to the heart of geometric analysis.

Having no office, I practically lived in Berkeley’s math library in those days. Rumor has it that the first thing I did upon arriving in the United States was visiting that library, rather than, say, explore San Francisco as other might have done. While I can’t remember exactly what I did, forty years hence, I have no reason to doubt the veracity of that rumor. I wandered around the library, as was my habit, reading every journal I could get my hands on. In the course of rummaging through the reference section during winter break, I came across a 1968 article by Milnor, whose book I was still reading. That article, in turn, little else to do at the time (with most people away for the holiday), I tried to see if I could prove something related to Preissman’s theorem.

Chapter 4: P.80

From this sprang the work I’ve become most famous for. One might say it was my calling. No matter what our station, we’d all like to find our true calling in life-that special thing we were put on this earth to do. For an actor, it might be playing Stanley Kowalski in A Streetcar Named Desire. Or the lead role in Hamlet. For a firefighter, it could mean putting out a ten-alarm blaze. For a crime-fighter, it could mean capturing Public Enemy Number One. And in mathematics, it might come down to finding that one problem you’re destined to work on. Or maybe destiny has nothing to do with it. Maybe it’s just a question of finding a problem you can get lucky with.

To be perfectly honest, I never think about “destiny” when choosing a problem to work on, as I tend to be a bit more pragmatic. I try to seek out a new direction that could bring to light new mathematical problems, some of which might prove interesting in themselves. Or I might pick an existing problem that offers the hope that in the course of trying to understand it better, we will be led to a new horizon.

The Calabi conjecture, having been around a couple of decades, fell into the latter category. I latched on to this problem during my first year of graduate school, though sometimes it seemed as if the problem latched on to me. It caught my interest in a way that no other problem had before or has since, as I sensed that it could open a door to a new branch of mathematics. While the conjecture was vaguely related to Poincare’s classic problem, it struck me as more general because if Calabi’s hunch were true, it would lead to a large class of mathematical surfaces and spaces that we didn’t know anything about-and perhaps a new understanding of space-time. For me the conjecture was almost inescapable: Just about every road I pursued in my early investigations of curvature led to it.

Chapter 5: P.104

A mathematical proof is a bit like climbing a mountain. The first stage, of course, is discovering a mountain worth climbing. Imagine a remote wilderness area yet to be explored. It takes some wit just to find such an area, let alone to know whether something worthwhile might be found there. The mountaineer then devises a strategy for getting to the top-a plan that appears flawless, at least on paper. After acquiring the necessary tools and equipment, as well as mastering the necessary skills, the adventurer mounts an ascent, only to be stopped by unexpected difficulties. But others follow in their predecessor’s footsteps, using the successful strategies, while also pursuing different avenues-thereby reaching new heights in the process. Finally someone comes along who not only has a good plan of attack that avoids the pitfalls of the past but also has the fortitude and determination to reach the summit, perhaps planting a flag there to mark his or her presence. The risks to life and limb are not so great in math, and the adventure may not be so apparent to the outsider. And at the end of a long proof, the scholar does not plant a flag. He or she types in a period. Or a footnote. Or a technical appendix. Nevertheless, in our field there are thrill as well as perils to be had in the pursuit, and success still rewards those of us who’ve gained new views into nature’s hidden recesses.

2014 International Congress of Mathematics: Awards

Fields Medalist:

Artur Avila

p_1

CNRS, France & IMPA, Brazil

[Artur Avila is awarded a Fields Medal] for his profound contributions to dynamical systems theory have changed the face of the field, using the powerful idea of renormalization as a unifying principle.

Avila leads and shapes the field of dynamical systems. With his collaborators, he has made essential progress in many areas, including real and complex one-dimensional dynamics, spectral theory of the one-frequency Schródinger operator, flat billiards and partially hyperbolic dynamics.

Avila’s work on real one-dimensional dynamics brought completion to the subject, with full understanding of the probabilistic point of view, accompanied by a complete renormalization theory. His work in complex dynamics led to a thorough understanding of the fractal geometry of Feigenbaum Julia sets.

In the spectral theory of one-frequency difference Schródinger operators, Avila came up with a global de- scription of the phase transitions between discrete and absolutely continuous spectra, establishing surprising stratified analyticity of the Lyapunov exponent.

In the theory of flat billiards, Avila proved several long-standing conjectures on the ergodic behavior of interval-exchange maps. He made deep advances in our understanding of the stable ergodicity of typical partially hyperbolic systems.

Avila’s collaborative approach is an inspiration for a new generation of mathematicians.

 

Manjul Bhargava

p_2

Princeton University, USA

[Manjul Bhargava is awarded a Fields Medal] for developing powerful new methods in the geometry of numbers and applied them to count rings of small rank and to bound the average rank of elliptic curves.

Bhargava’s thesis provided a reformulation of Gauss’s law for the composition of two binary quadratic forms. He showed that the orbits of the group SL(2, Z)3 on the tensor product of three copies of the standard integral representation correspond to quadratic rings (rings of rank 2 over Z) together with three ideal classes whose product is trivial. This recovers Gauss’s composition law in an original and computationally effective manner. He then studied orbits in more complicated integral representations, which correspond to cubic, quartic, and quintic rings, and counted the number of such rings with bounded discriminant.

Bhargava next turned to the study of representations with a polynomial ring of invariants. The simplest such representation is given by the action of PGL(2, Z) on the space of binary quartic forms. This has two independent invariants, which are related to the moduli of elliptic curves. Together with his student Arul Shankar, Bhargava used delicate estimates on the number of integral orbits of bounded height to bound the average rank of elliptic curves. Generalizing these methods to curves of higher genus, he recently showed that most hyperelliptic curves of genus at least two have no rational points.

Bhargava’s work is based both on a deep understanding of the representations of arithmetic groups and a unique blend of algebraic and analytic expertise.

 

Martin Hairer

p_3

University of Warwick, UK

[Martin Hairer is awarded a Fields Medal] for his outstanding contributions to the theory of stochastic partial differential equations, and in particular created a theory of regularity structures for such equations.

A mathematical  problem that  is important  throughout science is to understand the influence of noise on differential equations, and on the long time behavior of the solutions. This problem was solved for ordinary differential equations by Itó in the 1940s. For partial differential equations, a comprehensive theory has proved to be more elusive, and only particular cases (linear equations, tame nonlinearities, etc.)  had been treated satisfactorily.

Hairer’s work addresses two central aspects of the theory.  Together with Mattingly  he employed the Malliavin calculus along with new methods to establish the ergodicity of the two-dimensional stochastic Navier-Stokes equation.

Building  on the rough-path approach of Lyons for stochastic ordinary differential equations, Hairer then created an abstract theory of regularity structures for stochastic partial differential equations (SPDEs). This allows Taylor-like expansions around any point in space and time. The new theory allowed him to construct systematically solutions to singular non-linear SPDEs  as fixed points of a renormalization procedure.

Hairer was thus able to give, for the first time, a rigorous intrinsic meaning to many SPDEs arising in physics.

 

Maryam Mirzakhani

p_4

Stanford University, USA

[Maryam Mirzakhani is awarded the Fields Medal] for her outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces.

Maryam Mirzakhani has made stunning advances in the theory of Riemann surfaces and their moduli spaces, and led the way to new frontiers in this area. Her insights have integrated methods from diverse fields, such as algebraic geometry, topology and probability theory.

In hyperbolic geometry, Mirzakhani established asymptotic formulas and statistics for the number of simple closed geodesics on a Riemann surface of genus g. She next used these results to give a new and completely unexpected proof of Witten’s conjecture, a formula for characteristic classes for the moduli spaces of Riemann surfaces with marked points.

In dynamics, she found a remarkable new construction that bridges the holomorphic and symplectic aspects of moduli space, and used it to show that Thurston’s earthquake flow is ergodic and mixing.

Most recently, in the complex realm, Mirzakhani and her coworkers produced the long sought-after proof of the conjecture that – while the closure of a real geodesic in moduli space can be a fractal cobweb, defying classification – the closure of a complex geodesic is always an algebraic subvariety.

Her work has revealed that the rigidity theory of homogeneous spaces (developed by Margulis, Ratner and others) has a definite resonance in the highly inhomogeneous, but equally fundamental realm of moduli spaces, where many developments are still unfolding

 

Nevanlinna Prize Winner:

Subhash Khot

p_5

New York University, USA 

[Subhash Khot is awarded the Nevanlinna Prize] for his prescient  definition of the “Unique Games” problem, and his leadership in the effort to understand its complexity and its pivotal role in the study of efficient approximation of optimization problems, have produced breakthroughs in algorithmic design and approximation hardness, and new exciting interactions between computational complexity, analysis and geometry.

Subhash Khot defined the “Unique Games” in 2002 , and subsequently led the effort to understand its complexity and its pivotal role in the study of optimization problems. Khot and his collaborators demonstrated that the hardness of Unique Games implies a precise characterization of the best approximation factors achievable for a variety of NP-hard optimization problems. This discovery turned the Unique Games problem into a major open problem of the theory of computation.

The ongoing quest to study its complexity has had unexpected benefits. First, the reductions used in the above results identified new problems in analysis and geometry, invigorating analysis of Boolean functions, a field at the interface of mathematics and computer science. This led to new central limit theorems, invariance principles, isoperimetric inequalities, and inverse theorems, impacting research in computational complexity, pseudorandomness, learning and combinatorics. Second, Khot and his collaborators used intuitions stemming from their study of Unique Games to yield new lower bounds on the distortion incurred when embedding one metric space into another, as well as constructions of hard families of instances for common linear and semi- definite programming algorithms. This has inspired new work in algorithm design extending these methods, greatly enriching the theory of algorithms and its applications.

 

Gauss Prize Winner:

Stanley Osher

p_6

University of Califonia, USA 

[Stanley Osher is awarded the Gauss Prize] for his influential contributions to several fields in applied mathematics, and his far-ranging inventions have changed our conception of physical, perceptual, and mathematical concepts, giving us new tools to apprehend the world.

1. Stanley Osher has made influential contributions in a broad variety of fields in applied mathematics. These include high resolution shock capturing methods for hyperbolic equations, level set methods, PDE based methods in computer vision and image processing, and optimization. His numerical analysis contributions, including the Engquist-Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes and numerical schemes for Hamilton-Jacobi type equations have revolutionized the field. His level set contribu- tions include new level set calculus, novel numerical techniques, fluids and materials modeling, variational approaches, high codimension motion analysis, geometric optics, and the computation of discontinuous so- lutions to Hamilton-Jacobi equations; level set methods have been extremely influential in computer vision, image processing, and computer graphics. In addition, such new methods have motivated some of the most fundamental studies in the theory of PDEs in recent years, completing the picture of applied mathematics inspiring pure mathematics.

2. Stanley Osher has unique mentoring qualities: he has influenced the education of generations of outstanding applied mathematicians, and thanks to his entrepreneurship he has successfully brought his mathematics to industry.

Trained as an applied mathematician and an applied mathematician all his life, Osher continues to surprise the mathematical and numerical community with the invention of simple and clever schemes and formulas. His far-ranging inventions have changed our conception of physical, perceptual, and mathematical concepts, and have given us new tools to apprehend the world.

 

Chern Medalist:

Phillip Griffiths

p_7

Institute for Advanced Study, USA 

[Phillip Griths is awarded the 2014 Chern Medal] for his groundbreaking and transformative development of transcendental methods in complex geometry, particularly his seminal work in Hodge theory and periods of algebraic varieties.

Phillip Griffiths’s ongoing work in algebraic geometry, differential geometry, and differential equations has stimulated a wide range of advances in mathematics over the past 50 years and continues to influence and inspire an enormous body of research activity today.

He has brought to bear both classical techniques and strikingly original ideas on a variety of problems in real and complex geometry and laid out a program of applications to period mappings and domains, algebraic cycles, Nevanlinna theory, Brill-Noether theory, and topology of K¨ahler manifolds.

A characteristic of Griffithss work is that, while it often has a specific problem in view, it has served in multiple instances to open up an entire area to research.

Early on, he made connections between deformation theory and Hodge theory through infinitesimal methods, which led to his discovery of what are now known as the Griffiths infinitesimal period relations. These methods provided the motivation for the Griffiths intermediate Jacobian, which solved the problem of showing algebraic equivalence and homological equivalence of algebraic cycles are distinct. His work with C.H. Clemens on the non-rationality of the cubic threefold became a model for many further applications of transcendental methods to the study of algebraic varieties.

His wide-ranging investigations brought many new techniques to bear on these problems and led to insights and progress in many other areas of geometry that, at first glance, seem far removed from complex geometry. His related investigations into overdetermined systems of differential equations led a revitalization of this subject in the 1980s in the form of exterior differential systems, and he applied this to deep problems in modern differential geometry: Rigidity of isometric embeddings in the overdetermined case and local existence of smooth solutions in the determined case in dimension 3, drawing on deep results in hyperbolic PDEs(in collaborations with Berger, Bryant and Yang), as well as geometric formulations of integrability in the calculus of variations and in the geometry of Lax pairs and treatises on the geometry of conservation laws and variational problems in elliptic, hyperbolic and parabolic PDEs and exterior differential systems.

All of these areas, and many others in algebraic geometry, including web geometry, integrable systems, and Riemann surfaces, are currently seeing important developments that were stimulated by his work.

His teaching career and research leadership has inspired an astounding number of mathematicians who have gone on to stellar careers, both in mathematics and other disciplines. He has been generous with his time, writing many classic expository papers and books, such as “Principles of Algebraic Geometry”, with Joseph Harris, that have inspired students of the subject since the 1960s.

Griffiths has also extensively supported mathematics at the level of research and education through service on and chairmanship of numerous national and international committees and boards committees and boards. In addition to his research career, he served 8 years as Duke’s Provost and 12 years as the Director of the Institute for Advanced Study, and he currently chairs the Science Initiative Group, which assists the development of mathematical training centers in the developing world.

His legacy of research and service to both the mathematics community and the wider scientific world continues to be an inspiration to mathematicians world-wide, enriching our subject and advancing the discipline in manifold ways.

 

Leelavati Prize Winner:

Adrián Paenza

p_8

University of Buenos Aires, Argentina 

[Adrian Paenza is awarded the Leelavati Prize] for his contributions have definitively changed the mind of a whole country about the way it perceives mathematics in daily life. He accomplished this through his books, his TV programs, and his unique gift of enthusiasm and passion in communicating the beauty and joy of mathematics.

Adrián Paenza has been the host of the long-running weekly TV program “Cient´ıficos Industria Argentina” (“Scientists Made in Argentina”), currently in its twelfth consecutive season in an open TV channel. Within a beautiful and attractive interface, each program consists of interviews with mathematicians and scientists of very different disciplines, and ends with a mathematical problem, the solution of which is given in the next program.

He has also been the host of the TV program “Alterados por Pi” (“Altered by Pi”), a weekly half-hour show exclusively dedicated to the popularization of mathematics; this show is recorded in front of a live audience in several public schools around the country.

Since 2005, he has written a weekly column about general science, but mainly about mathematics, on the back page of P´agina 12, one of Argentinas three national newspapers. His articles include historical notes, teasers and even proofs of theorems.

He has written eight books dedicated to the popularization of mathematics: five under the name “Matem´atica

. . . ¿est´as ah´ı?” (“Math . . . are you there?”), published by Siglo XXI Editores, which have sold over a million copies. The first of the series, published in September 2005, headed the lists of best sellers for a record of 73 consecutive weeks, and is now in its 22nd edition. The enormous impact and influence of these books has extended throughout Latin America and Spain; they have also been published in Portugal, Italy, the Czech Republic, and Germany; an upcoming edition has been recently translated also into Chinese.

奇妙的动力系统和分形几何

动力系统,听起来像工程上面的发动机,但是它却是数学的一个分支,主要研究的就是在一个固定的规则下,一个点在时间的变化下在空间中的位置变化。比方说钟的摆动,动物种族的繁衍,全球的气候变动。这类的模型都属于动力系统。这篇文章要介绍的,是动力系统与分形几何的一些奇妙性质。

失之毫厘,差之千里

Screen Shot 2014-08-01 at 9.16.26 pm

1961年,作为天气预报员的Lorenz在利用计算机来做气象预测时,为了省事,就在第二次计算的时候,直接从第一次程序的中间开始运算。但是两次的预测结果产生了巨大的差异。Lorenz看到这个结果之后大为震惊,然后经过不断地测试,发觉在自己的模型当中,只要初始的数据不一样,就会产生不同的结果,而且结果大相径庭。在1979年的科学会议上,Lorenz简单的描述了“蝴蝶效应”:

一只蝴蝶在巴西轻拍翅膀,会使更多蝴蝶跟着一起轻拍翅膀。最后将有数千只的蝴蝶都跟着那只蝴蝶一同振翅,其所产生的巨风可以导致一个月后在美国德州发生一场龙卷风。                                                                                        —–Edward Norton Lorenz

Screen Shot 2014-08-01 at 9.15.29 pm

在实际的天期预测中,影响天气变化的因素数不胜数,用成千上万的变量来预测天气都不为过。科学家在研究问题的时候,就需要把一个非常复杂的问题简单化,但是又必须保证不能过于简单化。于是Lorenz在1963年发表的文章“Deterministic Nonperiodic Flow”里面提出了一个只有三个变量x, y, z的模型:

x^{'}(t) =\sigma(y-x)

y^{'}(t)=x(\rho-z)-y

z^{'}(t)=xy-\beta z

这个模型中,x,y,z是系统的状态,t是时间。\rho, \sigma, \beta是这个系统的参数。

A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor

这个模型肯定不能够精确地描述天气变化,但是对于Lorenz解释他自己的观点恰到好处。在这个模型中,变量之间有着非线性的关系,虽然只有三个变量,但是随着时间的推移,三个变量就会交织在一起,互相影响。在三维的空间里面作图的时候,随着时间的推移,系统的演变就会趋近于一个混沌的区域,就像几根线缠绕在两个图钉周围,形如一只正在拍打翅膀的蝴蝶。这个或许就是Lorenz把这现象叫做”蝴蝶效应“的原因。在Lorenz原创性的论文里面,他一针见血地指出天气的影响因素是复杂多变的,即使有了精确地模型,也没有办法做长期的预测,只能够在观测中不停地一边预计,一边修正。

Screen Shot 2014-08-01 at 9.06.57 pm

从数学的角度来看蝴蝶效应,就是在一个给定的动力系统下,一个微小的初值变动就能够带动整个系统长期而巨大的连锁反应,是一种混沌的现象。从社会学的方面来说明就是一个坏的机制,如果不加以及时地引导、调节,会给社会带来非常大的危害,戏称为”龙卷风“或“风暴”;一个好的微小的机制,只要正确指引,经过一段时间的努力,将会产生轰动效应,或称为“革命”。从心理学的角度来诠释就是表面上看起来毫无影响,非常微小的一件事情,都会带来巨大的变化。当一个人小时候的心理受到微小的心理刺激,在这个人的成长过程中,这个刺激就会被逐渐的放大并且不停地影响一个人的生活,牵一发而动全身。混沌理论改变了人们对于科学的看法,简单的数学背后隐藏的可能性远远比人们想象的多得多。

分形几何学:复杂简单化

从欧几里德写几何原本开始,大家就习惯于研究非常规则的形状,比如圆形,方形,正多面体。欧几里德的几何原本就向大家展示了这些规则图形的几何美感。但是在研究了规则的图形之后,对于不规则的图形该怎么去研究就成为了困扰大家的一个问题。譬如河流的支流,树枝的形状,蜿蜒的海岸线,这些都不是规则的图形,甚至都不知道该怎么样去描述这些形状。但是通过观察就会发现它们都具有一个非常有趣的性质,那就是自相似性。比如树枝,从底部看上去,会有分岔,甚至越分越多。如果从某一个枝节往上看,它仍然是一颗树枝,形状跟原来的几乎没有什么分别。就是说在越来越小的尺寸下,不停的复制之前的形状。那么很自然的一个问题就是:怎么样在数学上去构造这些自相似的图形,而不是通过刻意的人工去生成这些图案?通常的思维习惯就是复杂必须来源于复杂,复杂不可能来源于简单,经验告诉我们复杂的东西必须守恒化。

Screen Shot 2014-08-01 at 9.01.34 pm

但是数学工作者Mandelbrot在科研中却发现了一个简单得不能够再简单的规则去生成这种复杂的图形,那就是

z \mapsto z^{2}+c

在这个简单的规则下,z会变成z^{2}+c,然后z^{2}+c作为新的自变量z,再次进行这个运算,长此下去,就将形成著名的Mandelbrot集合。前两张图片就是在上面规则下形成的完整的Mandelbrot集合。那么我们将它放大六倍,放大之后看到的形状跟第一幅图片惊人的相似,继续放大100倍,2000倍,依旧不会改变它的这个性质。

Animation_of_the_growth_of_the_Mandelbrot_set_as_you_iterate_towards_infinity1024px-Mandel_zoom_00_mandelbrot_set

Mandelbrot-similar-x1 Mandelbrot-similar-x6 Mandelbrot-similar-x100 Mandelbrot-similar-x2000

在Mandelbrot集合里面,无论被放得有多大,都会看到跟原来图形相似的形状。这样的结果就告诉大家复杂不一定来源于复杂,说不定它背后的机制非常的简单,那就是说,同一个事情,可能既是复杂的,又是简单的,这样就要重新去考虑简单和复杂之间的关系。后来有人为了纪念Benoît B. Mandelbrot创立了分形几何中的自相似性,写了一句话:Benoît B. Mandelbrot里面的字母B就代表了Benoît B. Mandelbrot。

除了有z \rightarrow z^{2}+c产生的Mandelbrot集合,还有一些经典的分形结构。比如说Cantor集合。Cantor集合是不断的从一个区间[0,1]取走中间一段获得的集合。首先去掉(\frac{1}{3}, \frac{2}{3}),剩下[0,\frac{1}{3}] \cup [\frac{2}{3}, 1]。然后把剩下两条线段的中间都去掉,剩下[0,\frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]。不停的重复这个过程,最后剩下的集合就是Cantor集合。在数学中,Cantor集合是无穷无尽的,甚至是不可数的,但是却是不占据任何空间的,因为它的长度是零。下图简单的描述了Cantor集合的形成过程。

729px-Cantor_set_in_seven_iterations.svg

利用类似的想法,就可以构造出Sierpinski三角形和Siepinski地毯。

Animated_construction_of_Sierpinski_TriangleAnimated_Sierpinski_carpet

路漫漫其修远兮

这些也许就是动力系统的本质,在及其简单的规则背后,随着时间的不断推移,就能够创造出令人惊叹不已的复杂系统,就像河流支流的形成和Mandelbrot集合,就像天气以及动物的种族变化。这种规则的制定并不需要一个碍手碍脚的设计师,它就像是宇宙与生俱来的本事。人们对这种复杂的事物感到不自然的原因,可能就是在这种情况下不需要一个创造者。在给定初始条件的情况下,在给定的自然规则下,宇宙就可以自由的发展。而这个发展存在于自然科学和社会科学中,甚至生活中的方方面面。宇宙的复杂性以及美丽,都来源于简单的规则和不断的重复,规则虽然简单,但是过程却十分复杂,并且结果是不可预知的。即使有了科学的确定性,仍然也无法知道未来的样子。

 

 

科普文:从人人网看网络科学(Network Science)的X个经典问题

http://blog.renren.com/share/270937572/16694767796?from=0101010202&ref=hotnewsfeed&sfet=102&fin=3&fid=24297752024&ff_id=270937572&platform=0&expose_time=1386225841

科普文:从人人网看网络科学(Network Science)的X个经典问题作者: 邓岳

    长文,写了N个小时写完的。你肯定能看懂,所以希望你能看完,没看完就分享/点赞没有意义。有图有超链接,不建议用手机看。相关内容我想应该可以弄成一个小项目加到某门课中。

网络科学是这两年非常热门的研究方向,具体的研究方向、问题也很多。本文用人人网举几个简单例子,粗浅的说明一下网络科学中的一些经典问题。

社交网络(社会网络)是典型的的复杂网络,有小世界、模块化、无标度等特性。网络中节点(node)代表人,连边(edge/link)代表两个人是好友关系。下图是示意图,红点的意思后面说。

1、链路预测(Link Prediction)

链路预测是预测网络中“不存在但应该存在的边”或“现在不存在但以后可能存在的边”。对应到人人网,前者是说俩人实际上认识,但在人人里没加好友(人人数据相比真实来说缺失了一部分)。后者说俩人现在不认识,但有成为朋友的潜质(比如有共同兴趣等)。本文以前者为例进行说明,对应人人里的好友推荐

人人的好友推荐大体会给你推荐和你的共同好友多的人。潜台词:两人的共同好友数越多,他们认识的可能性也越高。

 (1)最简单的指标(Common Neighbors,CN)

某人的好友即为其在网络中的neighbors(有边相连的node),共同好友即为两人好友的交集。

CN为两人共同好友的个数,直观感觉CN越大,此二人是好友的可能性越大。

CN(x,y)=|N(x)∩N(y)|        N(x)为节点x的所有邻居(计算原因也可以加上x自己)

直观感觉基本没有问题,但CN会让好友多的人“占便宜”。举一个例子:你的好友A和你在人人里还没加好友,A不太玩人人,在人人里只有2个好友,这两个人你都认识,你和A的CN=2。而你的辅导员和你的CN=50(你班里很多同学都和辅导员是人人好友)。如果人人按CN从高到低推荐,那很可能推荐辅导员,很可能不会给你推荐A。

  (2)改进指标(Jaccard index)

从上得知,好友多的人沾光,应进行修正(惩罚),Jaccard系数定义如下:

Jaccard(x,y)=|N(x)∩N(y)| / |N(x)∪N(y)|

当然,改进方法还有很多,大体都是惩罚度数高的节点。比如如除以 k(x)+k(y) 或 k(x)*k(y) 等。k(x)为网络中节点的度,相当于邻居个数。

你会发现人人也会给你推荐只有两三个共同好友的朋友,就是这个原因。

代码如何实现?

数据结构里学过图(graph),图就是网络(network)。图的存储可以有邻接矩阵、邻接表等。

邻接矩阵:方阵,行和列都是网络里所有节点,矩阵元素0代表两节点有连边,1代表无连边。

邻接表:每行为一个节点,后面跟链表,链起来它的所有邻居。适合存储稀疏网络。

先说邻接矩阵,节点x所在行/列所有为1的元素对应的列/行即为x的好友(邻居),同理求y的好友,即可进行计算。

邻接表更简单,x所在行的链表就是x的好友。

 我刚注册人人,一个好友都没有,何谈共同好友?

这是链路预测的一个经典挑战:冷启动(Cold Start)。即对新用户(信息很少)的推荐。

人人网当然不会在共同好友一棵树上吊死,对于新用户,它会根据用户填写的资料进行推荐。如推荐和你同年入学同所学校,或同年龄家乡在相同城市的人等。

    这里还有问题大家可以考虑:推荐的都是目前和你没加好友的人,但整个人人里和你不是好友的有几千万人,总不能给这些人全都和你算一个共同好友数目,然后排序推荐。如何能圈定一个大致的范围?

==================================

2、社团发现(Community Detection)

社团发现是网络科学里另一个火爆问题。社团通常指网络中比较稠密(dense)的部分,就是连边紧密的几个人组成的一个小团体。社团具有“内紧外松”的性质,即社团内部连边稠密,而和社团外部的点连边相对稀疏。

比如你和宿舍的7个人,一共8个人,每两个人都加了人人好友。在网络里就是8个两两相连的点,构成一个大小为8的完全图(complete graph/clique,图中任两点间都有连边)。

假设有N个点,若最极端情况两两相连构成完全图,共有 N(N-1)/2条边。这是N个点之间边数的上线。

可以用简单的方法衡量网络中的一个子图(M条边,N个节点)的稠密程度:dense=M/[N(N-1)/2],显然dense∈[0,1]。

说着简单,给你一个网络看着好像也简单,上图左边三个红点之间就明显有一个社团,但找着可就难了。社团发现的方法流派很多,我之前发的一篇日志列了主流的一些方法。

在社团发现中,还有一大类方法是处理重叠社团(overlapping community)。所谓重叠社团,指节点可以属于多于一个的社团。比如考虑你的好友,高中同学可以聚成一个社团,本科同学可以聚成一个社团,而你既属于高中同学的社团,也属于本科同学的社团。

需要注意的是:在网络中(尤其是生物网络),一个社团/模块未必会表现出连接稠密的性质。

==================================

3、中心性(Centrality)

复杂网络研究中的“中心性”包括:度中心性(Degree Centrality)、介数中心性(Betweenness Centrality)、接近中心性 (Closeness Centrality) 等多种度量方式。

先简单介绍一下度中心性

度中心性就是节点的度(节点邻居个数),度数高的节点一般叫做Hub节点。

度中心性说明了什么?

人人网络中度数高的节点就是好友多,微博网络中度数高的节点就是粉丝多。Hub节点对于网络信息扩散有很大帮助。

度中心性有什么应用?

我想在微博上打广告,只要在李开复、留几手这种Hub节点上投放广告,很快很多用户就能看到。

对于传染病传播来说,Hub节点因为能接触到多人,因此一旦得病很容易传染给周边人群。

对于铁路网络(节点是火车站,边表示两火车站间存在铁路),像徐州、郑州这种交通枢纽城市即为Hub节点。有意识的在全国不同地区设置Hub节点,可以优化车次中转。

然后稍详细说一下介数中心性

介数中心性用来衡量网络中节点和边的重要性,和最短路径紧密相关。

节点s的介数中心性 = 网络中任意两点间的最短路径中通过s的最短路径条数 / 网络中任意两点间的最短路径数

边e的介数中心性 = 网络中任意两点间的最短路径中通过e的最短路径条数 / 网络中任意两点间的最短路径数

对于连通网络,上式分母即为 N(N-1)/2。分子是看这么多条最短路径中,有多少条经过s。

显然 节点的介数中心性∈[0,1]。对于边缘节点(叶子),介数中心性为0;对于星型网络的中央节点,因为所有的最短路径都经过它,所以它的介数中心性为1。

介数中心性说明了什么?

介数中心性高的节点/边一般处于网络的“交通要道”,起到信息传输桥梁的作用,通常处于两个社团之间。上图中红色的点都是介数中心性较高的点。

介数中心性有什么应用?

对于网络攻击而言,希望击毁尽可能少的节点就让网络瘫痪,则可以选择介数中心性高的节点进行攻击。若把上图中6个介数中心性高的节点移除(同时删除红点连接的边),网络就会被分割成多个碎片。

对于上面说的社团发现而言,也可以通过移除介数中心性高的节点,让网络自然分成内紧外松的几部分。但这样做会有一个问题:移除的点到底属于哪个社团?大家可以自己考虑。

介数中心性怎么算?

先用Floyd-Warshall算法计算网络中任意两点的最短路径算法,作为分母。分子就是通过某个顶点或某条边的最短路径。但是,Floyd算法就复杂度O(节点数的3次方),对于大网络效率太低(社会网络甚至可以得到千万甚至亿级节点)。

经典的Brandes算法对于无权图(认为每条边的长度均为1)的复杂度可以到O(节点数*边数)。

最后简单说说接近中心性

接近中心性的基本思想:如果一个人能很容易的联系到其他人,那么TA就是中心的。即TA到其他所以人的距离比较短。在定义时采用网络中两点间最短距离的概念(Dijkstra算法没忘吧),定义如下:

节点i的接近中心性 = ( n-1 ) / ( i到网络中其他点的最短距离的和 )。其中n为网络中节点个数,n-1即为除了i之外的总节点数目。

接近中心性的应用在后面会说。

==================================

4、复杂网络的一些拓扑特性

 (1)小世界(Small World)

常听到的一个概念,社交网络中的“六度分隔”原理(Six Degree Separation)就是小世界现象的一个表现。其核心是网络中任意两点的平均最短距离低。

从人人网也能看出,它是很稀疏的网络,整个网络几千万个节点,每个节点的邻居一般就是几十到几百个。任意选出两个节点,它们之间有连边的可能性很低,但它们的最短路径一般很短(从Facebook数据来看,网络中任意两点的平均最短路径约为4)。

那么,如何能把一个规则网络变成满足小世界特性的网络呢?可以通过随机重连边的方式,看下图(a),原版的网络(深灰色边)是一个规则网络,每个节点的度均为4(连接它左右的4个节点)。通过随机把一些边重连(黑色边),会产生一些“捷径”(short cut),能迅速降低网络中各点的平均最短距离。

 (2)无标度(Scale-free)

整个人人网里,如果把每个节点的度(好友个数)做一个统计,会是什么样的分布呢?

可以想象,度数高的节点是很少的,度数低的节点占绝大多数

无标度网络各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数Hub节点拥有极其多的连接,而大多数节点只有很少量的连接。具体来说,节点的度分布符合幂率分布(power law)。所谓无标度,指的是少数高度数的节点的度数非常高,高到爆表。

那么,如何能生成一个无标度网络?经典的BA模型是这样说的:当有新的点加入到网络中时,它会根据概率和网络中的其他点相连,新的点X和老的点Y相连的概率正比于Y的度,即新的节点更倾向于连接到原本度数高的节点(Hub),也称为“优先连接(preferential attachment)”特性,或者叫“富者更富(rich get richer)”或者“马太效应(Matthew effect)”。通过反复添加新节点,就能构建出一个无标度网络。

这个用人人举例不是非常形象,我换用微博举例。一个新注册的微博用户会关注哪些微博呢?有很大可能是关注那些已成名的“大V”(手哥、李开复……)。“大V”即为Hub节点,新节点偏向于和这些Hub相连。如果没有突发情况,“大V”的粉丝增加速度始终会快过普通用户,即“富者更富”。

幂率分布是个复杂网络研究中的大神级概念,感兴趣的同学务必自己多查资料。这里举个简单例子:你一天要发很多短信,我们考虑一下两条短信之间的相隔时间。首先,间隔肯定不是固定的(比如你每小时发一条短信),显然是随机的。那这个随机的时间是否符合某种概率分布?直观想可能是高斯分布(钟形),大多数短信间隔时间差不多(比如每小时左右发一条),但少数短信间隔时间很长(半天也没发一条)或很短(1小时发了3条)。但实际上,发短信存在着“爆发”现象,某些情况下你可能10分钟就发了10条(联系其他同学吃饭,或者通知),而有时可能10小时也没有发一条(睡觉)。而这种爆发在高斯分布中是不可能出现的,感兴趣的同学可看巴拉巴西的《爆发》

 (3)Giant Component

一个规模很大的网络中,可能存在多于一个的连通分支/连通分量(Connected Component),即网络中并非所有节点都连通。但是在真实网络中通常存在一个规模很大的连通分支(即Giant Component)会包含网络中大多数的节点(比如超过80%的节点)。

如果一个人刚注册人人,还没加好友,那他就是一个孤立点(没有和任何其他点相连)。而一旦有了好友,就不再是孤立点。如果某个学校规定学生在人人只能加本校好友,不能有外校好友,那么这个学校的学生也会构成一个小的独立的连通分支。不过可以想到,人人里绝大多数的同学都处在一个超大的连通分支中,真正孤立的节点或小的连通分支所占用户数是很少的。

Facebook的数据显示约99.7%的用户处在一个超大的Giant Component中。

==================================

5、高影响力节点(high influential nodes)/传播(spread)

识别网络中的高影响力节点(leader)有什么用?拿信息传播来说,如果你希望你的信息能迅速在网络中传播,那你就要考虑选择通过高影响力节点来传播信息。

早期的研究结果认为网络中的高度数(Hub节点)或高介数的节点是传播中最有影响力的节点,这是因为Hubs节点拥有更多的人际关系,而高介数的节点有更多的最短路径通过。

高度数节点的例子:你把一卡通丢了,在人人发了一个寻物状态,然后@了一些公共主页(西电小喇叭、西电睿思、在西电……)。因为你觉得这些公共主页因为好友比较多(degree高,属于网络中的Hub),能更有效地把你的信息扩散出去。

高介数节点的例子:你班里的同学A和计算机学院的同学B是情侣。你的班级想和计算机学院合办一个讲座,班长发状态圈了A,A分享给B,B的分享就让很多计算机学院的同学看到了这个信息。尽管A、B两人的好友(degree)未必很高,但A、B算是软件学院、计算机学院两个社团之间的“桥梁”(请回看2中的图中的红点),介数中心性比较高(请回看3),也在信息传播中扮演重要角色。

上面两个例子都很好理解,很符合直观思维,但说的就是对的么?

从直观来想,对于一个网络,应该是靠近网络“中心”的节点具有较高的传播能力。如上图中间红圈中的4个点,可以很迅速的把信息传播到绿圈和蓝圈。

对于上图中的黄色点,虽然其度数很高,但由于并不处于网络“中心”,传播能力显然不如红圈中的4个点。例如:黄色点要把信息传给最下方的红点(位于蓝圈),就需要先传到红圈中,再向下传到绿圈中的红点,最后才能传到蓝圈。

上例和之前认为”高度数节点的影响力高“存在着明显矛盾。“度数高的点影响力高”好理解且好计算,因为网络中一个节点的度数,就是其邻居个数,不管是用邻接矩阵还是邻接表存储,都很容易求得。但“靠近中心”这是个很模糊的说法,和网络的布局(layout)有关系。如果一个网络已经画出来了,我们一眼就能看出所谓的“中心”在哪里。但如果是采用另一个画法,比如你人为把上图中的蓝色点拖到网络外围,那它也就不在中心了。

说到这里,就产生了一个新问题:如何形式化的(用数学手段)确定网络的“中心”?

直观的看,可以用上面的“接近中心性”来计算。位于网络中心的节点,和其他节点的最短距离都比较小;而位于网络边缘的节点,和很多节点(位于网络另一侧的节点)的最短距离都比较大。但是,接近中心性需要计算网络中任意两点间的最短距离,计算量很大。

也有研究者提出利用图论中的概念“K-Shell”来进行:

1、首先删除网络中所有度为1的节点。删完以后检查,原来某些度大于1的节点会变成度为1的,就继续删,删完再检查,再删……直到没有度为1的节点为止。最终,认为刚才所有删掉的的节点属于第一层,即ks=1的节点(上图外围蓝色圈);

2、现在网络中肯定没有度为1的节点了(都删掉了),那就开始删除度为2的节点(和上一步方法一致)。这次删掉的就是ks=2的节点(上图绿圈);

3、依此类推,接着删度为3的节点,然后是度为4的节点……最终网络删干净了,网络中所有的点都被分配了一个ks值。

实验研究表明,对于单个传播源的情形(你只圈一个公共主页让其帮你转发),Hubs节点或者高介数的节点不一定是最有影响力的节点,而通过K-shell分解分析确定的网络核心节点(K-shell值大的节点)才是最有影响力的节点;对于多传播源情况下(你圈了多个公共主页来帮你转发),传播的规模很大程度依赖于初始传播源之间的距离,此时选择多个Hub节点是比较有效的。

==================================

6、网络的比对(alignment)、去匿名化(de-anonymization)

我们一般不止用一个SNS(比如同时在用QQ和人人),那多个SNS网络存在着部分一致(比如你宿舍8个人在人人上互相加了好友,在QQ上也互相是好友)。网络比对的目的就是寻找两个网络中的节点的对应关系。

如上图(图片来自http://botao.hu/works/research/de-anonymizingsocialnetworks)所示,比如说左边网络是人人,右边是QQ。根据两个网络极其中节点的拓扑特征,我们把两个网络中的节点进行映射(虚线),即虚线相连的两个点,是同一个实体(人)。

通过网络比对,得到两个网络间节点映射,有啥用?

一个应用是“去匿名化”,顾名思义就是搞清楚网络中的匿名用户到底是谁。比如说公安机关发现人人网里一个名为wurht的用户在疯狂造谣(左图左下角翠绿节点),但人人中其注册所用信息是假的。通过网络比对,可以知道人人中的wurht用户对应着QQ中的wurh用户,而通过腾讯可以查到其身份,自然也就知道了人人中wurht的真实身份。

需要注意的是,网络比对可以仅利用拓扑特征,也可整合更多的特征(比如节点的某些个人信息)。比如腾讯的圈子中的“智能备注”功能,会根据一个用户的好友对其的备注,来推断其真实身份(根据腾讯官方说明:如果圈子内有半数以上的好友对您设置相同的QQ备注名,这个备注名将默认成为您在圈子内展现的名称。)。这和标签传播(Label Propagation,用已标记节点的标签信息去预测未标记节点的标签信息)的思想有些类似。

==================================

7、动态网络(Dynamic Networks)/演化(Evolution)

这里的动态网络主要指网络在不同时间点的变化。拿人人网为例,如果你每月的一号把人人网里你好友的数据储存一次(保存你的好友、好友的好友之间的连边关系),连续存上一年,就形成了由12个静态网络组成的动态网络。在这12个静态网络中,节点和边可能都不一样(注意在前面链路预测研究中,节点是不变的)。

我们把这12个静态网络依次来看,看每个月和下一个月之间的差异。可以用前面讲的社团发现的方法,对每个静态网络进行聚类,然后研究相邻两个月之间社团的变化情况。可以定义如下六种相邻时刻间的变化:

(1)Growth:同一个社团,在相邻时刻出现了增长(如节点变多了)。和Growth相对的就是Contraction。

(2)Merging:t时刻的两个社团,在t+1时刻合并成了一个社团。和Merging相对的就是Splitting。

(3)Birth:t+1时刻新出现了一个社团(该社团在t时刻不存在)。和Birth相对的就是Death。

比如在1月1号时,软件学院的小帅(男)和人文学院的小美(女)的两个宿舍,各自构成了一个社团(比如是8个节点的完全图)。但由于这两个宿舍的人互相之间并不认识,所以两个社团间的连边很少。在1月中旬,小帅和小美成为了情侣,两个宿舍的人也开始互相认识,大部分同学之间也加了人人好友。在2月1号,由于这两个宿舍原先构成的社团之间多了很多连边,这两个社团就合成了一个大的社团(16个节点的近似完全图)。这就是上图的Merging。又过了几个月,俩人又分手了,两个宿舍的人也纷纷取消删了之间的好友关系,一个大社团又回到了最早的两个社团,即为Splitting。

 

【未完待续】

==================================

网络科学自学资料

一、书

1、《网络科学导论》《链路预测》《网络科学》 、《Network Science》 入门且全面,正统的Network Science

2、《推荐系统实践》《推荐系统》 主流的Web应用里都有推荐系统,算是网络科学的主要应用方向

3、《网络、群体与市场》 也是入门书,结合经济学、社会学、计算与信息科学以及应用数学的有关概念与方法,考察网络行为原理及其效应。

4、《链接》 巴拉巴西早期经典著作

二、公开课

1、Social Network Analysis 2013.3开课时我全程跟下来并拿到了成绩。2013.10再次开课。强烈建议英文差不多的10级不考研同学10月跟一下这个。

2、网络、群体与市场 中文公开课,在Coursera也有。对软件方向的同学,建议重点看一下课程的第2、3、9、11、13~17章。

3、Social and Economic Networks: Models and Analysis,斯坦福,2014.1开课(来自文后留言)

转载:世界十个著名悖论的最终解答

(一)电车难题(The Trolley Problem)

引用:
一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗?

解读:

电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。
引用完毕。

Das曰:
人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么?
承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。
人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。
那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。
今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应当为这种行为负责。
行为并不是行动,你什么也不干也是一种选择,因而也是一种行为。
我们将这个思想实验稍作修改,就可以看到什么也不干确实是一种实实在在的行为:
加入电车的前方帮着5个人,你拉动一下拉杆就能使将电车驶向岔道——而岔道上什么也没有,不会造成任何危害。这时候你动不动拉杆呢?如果你不拉,你什么也不干,眼睁睁看着五个人被轧死,这显然是不道德行为——你本来有选择的余地,轧死五个人并不是唯一可能的结果,你只要举手之劳就能挽救五个人的生命,但是你选择了什么也不干,你就应当为你的行为负责任,即使法律不去惩罚你,你的行为最起码也是不道德的。

现在我们可以理清这个悖论的条理了:
一、对于这一事件,你只有两种选择的可能性:动拉杆或者不动拉杆。你必须在这两种行为中选择一个,你能够预料到不同的行为会有不同的后果:
二、你选择“不动拉杆”这种行为,会造成五个人死亡;你选择“动拉杆”这种行为,会造成一个人死亡。
这个悖论的关键在于人们普遍认为这是在两种不道德的行为中选择其一,因而是个难题——这是真正的脑袋被驴踢了。Das说那么多年那么多大牌高手脑袋都被驴踢了一遍,你可能有点不大相信,可事实就是这样。事实上当你必须二者之中选择其一的时候,这两种行为绝对不可能都是不道德的。

只有一种选择的时候,就等于没有选择,没有选择就没有行为,没有行为就没有责任——也就无所谓道德不道德。
在这个悖论中如果没有拉杆,你无法改变电车的方向,你对轧死五个人的结果根本就无能为力,无论你干什么事儿对这一结果都没有影响,这时候无论你干什么,都等于什么也不干——你唯一的选择就是什么也不干,你就等于没有选择、没有行为,因而这这一事件中你也谈不上什么道德不道德。
当你只有两种选择(或者100种选择,道理是一样的),你除此之外就没有选择。假如这两种选择都是不道德的,这就等于说无论你怎样选择都是不道德的,就等于说这种不道德竟然不是由于你的自由选择造成的,而是外界强加给你的。这显然是胡说八道。根据我们前面的论证:如果一种行为是不道德的,那必然是由于你自由选择造成的。当你无可选择的时候,那根本就无所谓道德不道德。

这一悖论的答案可以揭晓了:
一、你只有两种选择、两种可能的行为:动拉杆或者不动拉杆,这必然造成两种不同的结果:一个人死亡或者五个人死亡。这两种行为不可能都是不道德的。
二、你拉动拉杆,造成一个人死亡的结果,你不应当为此承担道义上的责任,因为这个人的死亡,不是你的行为造成的。外界条件决定必然会有人死亡,要么一个、要么五个,至少要死一个人——这是必然的结果,这是你无法阻止的结果。
三、你不拉动拉杆,造成五个人死亡,你应当为此承担道德的谴责。死亡五个人,不是必然的结果,而是你的行为造成的。外界条件决定必然会有人死亡,要么一个、要么五个,死一个是必然的,死五个不是必然的,现在真的死了五个,那是你的行为造成的。

在这里,我们把六个人的生命当成同等价值的抽象个体,这样做可能会有人提出反对意见:每一个人的生命都是唯一的、无价的、至高无上的,das没有理由为了挽救那五个人的生命牺牲者一个人——das没有剥夺这个人生命的权利,不管出于什么高尚的理由。

Das这样驳斥这种观点:
你仍然将“不动拉杆”这种行为不当做一种行为看待,这是错误的。在前提条件下,这一个人与另外五个人一样,面临同样的生命威胁。假如das没有权力为了这五个人的生命牺牲这一个人,同样,我也没有权力为了这一个人的生命牺牲那五个人。即使这一个人生命的价值与那五个人是对等的,他们在我选择时考虑的权重也应当相互抵消。既然每个人的生命价值都是至高无上的,那五个人的生命价值即使并不高于这一个人,至少也并不低于这一个人。既然没有办法比较每个人生命价值的大小,那么我就不这样考虑问题。这时候我将每一个单个的生命当做同等价值的抽象个体,并且认为5大于1,这就是唯一合理的选择。

 

 

 

十个著名悖论的最终解答(二)空地上的奶牛(The Cow in the field)

引用:
认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确?

解读:

空地上的奶牛最初是被Edmund Gettier用来批判主流上作为知识的定义的JTB(justified true belief)理论,即当人们相信一件事时,它就成为了知识;这件事在事实上是真的,并且人们有可以验证的理由相信它。在这个实验中,农民相信奶牛在空地上,且被送奶工的证词和他自己对于空地上的黑白相间物的观察所证实。而且经过送奶工后来的证实,这件事也是真实的。尽管如此,农民并没有真正的知道奶牛在那儿,因为他认为奶牛在那儿的推导是建立在错误的前提上的。Gettier利用这个实验和其他一些例子,解释了将知识定义为JTB的理论需要修正。

引用完毕。

Das曰:
这其实就是盖梯尔问题。盖梯尔问题引起了长期大范围的争论,产生了无数个变种。盖梯尔刚刚提出他的问题的时候,大家都认为这确实是一个问题,但是很容易解决——只要对JTB理论进行小的补充完善就会万事大吉。但是随着讨论的深入,所有补充完善JTB理论的企图都被进一步变种的盖梯尔问题击溃,以至于有人怀疑真正完善的JTB理论是不是真的存在。
以下das给出自己的答案。这答案足以迎头痛击一切现有的盖梯尔问题的攻击——我希望,不要被进一步变种的盖梯尔问题击垮。如果本论坛能够提出一个击垮das的盖梯尔式的思想实验的反例,das将无比欣慰。

柏拉图认为知识是得到辩护和证明的真信念。这就是原始的JTB。
Das认为:
一、 知识是真的信念。
二、这信念具有充分的理性基础。(S具有充分的理性基础是指:当且仅当P是人类公认的公理,Q是内部一致的有效的逻辑系统,以P为前提,通过Q,可以合理导出S。)
三、 知识的主体对其理性基础有充分的了解。
四、 充分的程度与该知识的重要性相当。

 

 

 

十个著名悖论的最终解答(三)定时炸弹(The Ticking Time Bomb)
引用:
如果你关注近几年的政治时事,或者看过动作电影,那么你对于“定时炸弹”思想实验肯定很熟悉。它要求你想象一个炸弹或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道炸弹的埋藏点。你是否会使用酷刑来获取情报?

解读:

与电车难题类似,定时炸弹情景也是强迫一个人从两个不道德行径中选择的伦理问题。它一般被用作对那些说在任何情况下都不能使用酷刑的反驳。它也被用作在极端形势下法律——就像美国的严禁虐囚的法律——可以被放在第二位的例子。归功于像《24小时》的电视节目和各种政治辩论,定时炸弹情景已成为最常引用的思想实验之一。今年早些时候,一份英国报纸提出了更为极端的看法。这份报纸提议说,如果那个恐怖分子对酷刑毫无反应,那么当局者是否愿意拷打他的妻子儿女来获取情报。

引用完毕。

Das来讲一个现实生活中的真实的故事:
一个朋友是相当一级的领导,一次他办理一个绑架小女孩的案件,罪犯送来小女孩的手指勒索钱财——影视剧中常见的情节。不过下面的故事却很不常见。罪犯约定了无论钱是不是到手都要撕票,罪犯A去取钱,如果罪犯A在22时不回来集合,其他罪犯就撕票潜逃。
朋友只好把A抓回来——让他拿钱回去就等于害死了小女孩。问题是时间紧迫,A这小子是知道一点法律的,他认定说不说都是死刑,不如不说,说不定找不到证据,还能留条活路。所以审讯室里出现了奇怪的场景:审讯员手脚冰凉、头顶冒汗,罪犯却神态自若,从容以对,时不时地露出狰狞的奸笑。
时间在流逝,每一秒钟都生死攸关。当断不断,必受其乱。朋友打法其他人离开,独自负责审讯,并且声明有其个人对结果负责。
朋友拎出一把菜刀,按住A的一个手指,微笑着说:“我只问你一遍:小女孩关在哪里?”
A显然对这种威胁不屑一顾:“我真的不知道你问什么。”
咔嚓一声,手起刀落,一根手指掉在地上。
在A的鬼嚎声中,朋友按住他的另一根手指,仍然微笑着说:“我只问你一遍:小女孩关在哪里?”
A这一次没有回答。
咔嚓一声,手起刀落,地上现在有了两根手指。
没有等到朋友按住他的第三根手指,A交代了小女孩关押的位置。
小女孩解救出来以后,朋友用一个塑料袋装着菜刀和手指,到检察院投案自首:“我刑讯逼供,我来投案自首。”

事情的发展更加富有戏剧性。朋友的行为显然违法,显然构成犯罪,但是检察院就是不立案,说这行为有紧急避险的性质,最终定性还要研究,就是不给文字结论。公安局也不给他停职,说这是检察院的事儿,检察院没有结论,我们不好说什么。法院不闻不问,检察院没有起诉,我们根本不知道。就连无孔不入的律师也对这事儿只字不提,甚至A自己都认为这是合理的,既然没人提,他干脆就不承认被人剁了手指,法庭上他说他因为干了这事儿后悔,自己剁的。甚至恬不知耻地说是他主动交代小孩的关押地点,主动配合公安解救了小女孩,有重大立功表现,要求给条生路。

生路是没有,A很快就毙了。朋友的行为成了我们酒后谈论的英雄壮举,朋友自己的话,是这个故事最好的注脚:“即使是法律,也不能蒙蔽我的良心。”

 

我们把“定时炸弹问题”做一些变形,让我们的理性来为世界立法:

一、假设罪犯隐藏的不是一颗定时炸弹,而是一千颗原子弹,时间一到地球就玩完,只有剁他的手指头才能阻止这一切,现在决定权交给你,你剁还是不剁?
即使完全从维护这个罪犯权利的角度考虑问题,完全不管全人类的生死,你不剁,他别说手指头,连小命也要呜呼,你剁了,他无非少几个手指头,小命至少保得住,你凭什么不剁?为什么不剁?
二、假设罪犯隐藏的不是一颗定时炸弹,而是一千颗原子弹,时间一到地球就玩完,全人类都玩完,只有这个罪犯有特异功能能够幸免遇难。只有剁他的手指头才能阻止这一切,现在决定权交给你,你剁还是不剁?
你不剁,你就成了他的同谋,das肯定剁了你没商量。

三、假设罪犯隐藏的不是一颗定时炸弹,而是一千颗原子弹,时间一到地球就玩完,全人类都玩完,只有这个罪犯和其他20名地球人有特异功能能够幸免遇难。只有剁他的手指头才能阻止这一切,现在决定权交给你,你剁还是不剁?
这与(二)没有任何本质区别。
四、假设罪犯隐藏的不是一颗定时炸弹,而是一百颗原子弹,时间一到地球就玩完一半,人类玩完一半,这个罪犯能够幸免遇难。只有剁他的手指头才能阻止这一切,现在决定权交给你,你剁还是不剁?
这与(二、三)没有任何本质区别。
五、假设罪犯隐藏的就是一颗定时炸弹,时间一到半个城市的人就玩完,只有剁他的手指头才能阻止这一切,现在决定权交给你,你剁还是不剁?
这与(二、三、四)没有任何本质区别。

最后一个假设,其实就是“定时炸弹问题”。

我们不反对罗尔斯,也很欣赏程序正义。我们自愿遵守法律程序,我们对正当的程序表示真心的尊重,但是,指导我们行动的,永远是心灵深处的道德法则!当程序正义或者其他任何正义与我们心灵深处的道德法则发生冲突时,我们毫不犹豫地捍卫道德的尊严;同时,一个理性的人不应当伤害程序的正义,我的朋友和苏格拉底一起做出了表率:我不逃避、不隐瞒、不后悔、不改变,我自愿接受程序的处罚。我用行动维护道德的尊严,同时甘愿用一个人的苦难维护程序的尊严。

 

 

 

十个著名悖论的最终解答(四)爱因斯坦的光线(Einstein’s Light Beam)

引用:
爱因斯坦著名的狭义相对论是受启于他16岁做的思想实验。在他的自传中,爱因斯坦回忆道他当时幻想在宇宙中追寻一道光线。他推理说,如果他能够以光速在光线旁边运动,那么他应该能够看到光线成为“在空间上不断振荡但停滞不前的电磁场”。对于爱因斯坦,这个思想实验证明了对于这个虚拟的观察者,所有的物理定律应该和一个相对于地球静止的观察者观察到的一样。
解读:

事实上,没人确切知道这意味着什么。科学家一直都在争论一个如此简单的思想实验是如此帮助爱因斯坦完成到狭义相对论这如此巨大的飞跃的。在当时,这个实验中的想法与现在已被抛弃的“以太”理论相违背。但他经过了好多年才证明了自己是正确的。

引用完毕。

Das曰:
爱因斯坦的梦想具有象征性的意义。他不可能以光速去旅行,因为那需要无穷大的能量——宇宙中根本没有这么多的能量。

假如爱因斯坦以光速旅行,他会看到什么呢?
他什么都看不见。因为这时候根本就没有时间——时间不再流动。他的手表、电子钟、机械中一起停止运转,不是因为出了故障,而是时间在这里静止了。爱因斯坦的一根头发变得比泰山重得多,我怀疑他的体力能否承受任何一根头发。不过也不用过于担心,一根头发想压死爱因斯坦也做不到——压死他需要时间,但是这里没有时间。我们站在地球上看着爱因斯坦以光速旅行一年,但是爱因斯坦却没有经历这一年,开始和结束都在同一时刻,这中间时间丝毫没有流动,丝毫没有变化;这中间没有发生任何事,没有任何运动和变化,他当然也不曾在这期间“看见”任何东西。

 

 

 

十个著名悖论的最终解答(五)特修斯之船(The Ship of Theseus)

引用:
最为古老的思想实验之一。最早出自普鲁塔克的记载。它描述的是一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?哲学家Thomas Hobbes后来对此进来了延伸,如果用特修斯之船上取下来的老部件来重新建造一艘新的船,那么两艘船中哪艘才是真正的特修斯之船?

解读:

对于哲学家,特修斯之船被用来研究身份的本质。特别是讨论一个物体是否仅仅等于其组成部件之和。一个更现代的例子就是一个不断发展的乐队,直到某一阶段乐队成员中没有任何一个原始成员。这个问题可以应用于各个领域。对于企业,在不断并购和更换东家后仍然保持原来的名字。对于人体,人体不间断的进行着新陈代谢和自我修复。这个实验的核心思想在于强迫人们去反思身份仅仅局限在实际物体和现象中这一常识。

引用完毕。

Das曰:
现在要探讨“同一性”问题。
量子力学里头有一个“全同原理”,说的是同类的粒子之间本质上是不可区分的。两个氢原子之间没有性质的区别。你用这个氢原子代替水分子中的那个氢原子,这个水分子的性质没有任何改变。

那么,问题就来了:我们的身体都是由基本粒子构成的,而且从我们诞生那一天起,一刻不停地进行着新陈代谢,新陈代谢的速度远比我们一般人想象的快的多。科学家用‘示踪元素’参与新陈代谢的实验证明,新陈代谢速度比科学家以前想象的速度也要快的多。今天组成你身体的元素,与昨天有很大不同,与几年以前几乎完全不同。但是我们仍然认为你还是你,现在的你和几年前的你是同一个人,这是为什么呢?
因为“全同原理”存在,组成你的身体的元素虽然被替换了一遍,但是同类粒子之间是完全一样的,没有性质的区别。用这个氢原子代替你身体里的那个氢原子,你身体的性质不发生任何改变。
当然,现在你比几年前长大了一些或者变老了一些,这是由于你身体的结构发生了一点细微的变化——组成你身体的元素之间的相互关系发生了一点改变,而不是由于替换了元素的关系。

我们认定同一性——认定一个事物是它本身的依据不是组成这一事物的元素,而是这一事物的内部结构——元素之间的关系,以及这一事物的时空连续性。

仅仅结构相同,并不表明他们就是同一事物,还必须同时具备时空连续性才行。
我们可以按照一张图纸建造两座大楼,我们假设建筑工人都是绝顶高手,两个大楼的任何一个分子、原子都完全一样,这两座大楼具有一模一样的结构,但他们显然是两个事物。两座大楼同时处于空间的不同位置,它们当然不可能是一个东西。我从来没有见过你的身体同时在两个地方,即使几十年来我一刻不停地盯着你看,也是如此。如果我在两个地方见过你——一次在家里、一次在学校,那肯定不是同时,一定是不同的时间。而且我可以肯定:你一定有一个从家里到学校的连续的运动过程,虽然你在不同的时间,可以在不同的地方,但是任何一个特定的时刻,你肯定在一个唯一的地方。
同样道理,仅仅具有时空连续性,结构完全不同也不成:
我们把一辆汽车砸碎了炼成铁块,用这铁块制成一座金属雕像,虽然它具有时空的连续性,但是它的结构彻底改变了,我们不能说雕像就是原来的汽车。它们不具有同一性。

好了,现在我没有足够的知识了,我们再回过头来看看“特修斯之船”
特修斯之船不断更换部件,最后所有的部件都换了一遍。在整个过程中,它显然具有时空连续性,就好像你的身体不断进行新陈代谢,但丝毫不影响其时空连续性;更换的船板和以前的船板有点区别,但差别不大,功能完全一样,和整个船的复杂性比起来,这点差别可以忽略不计,整个船的结构基本没有改变,即使有一些改变,也像你比几年前变老了一点一样,这点差别完全不影响同一性。因此特修斯之船还是特修斯之船,你就是把船板更换一千遍,它还是它自己——这根本不影响同一性。
你用换下来的船板和部件再组装一艘船,结构一样不一样我不管,它和特修斯之船没有时空连续,因而那是另外一艘船。你叫它什么都行,它不是特修斯之船

 

 

 

十个著名悖论的最终解答(六)伽利略的重力实验(Galieo’s Gravity E)

 

引用:
为了反驳亚里士多德的自由落体速度取决于物体的质量的理论,伽利略构造了一个简单的思想实验。根据亚里士多德的说法,如果一个轻的物体和一个重的物体绑在一起然后从塔上丢下来,那么重的物体下落的速度快,两个物体之间的绳子会被拉直。这时轻的物体对重物会产生一个阻力,使得下落速度变慢。但是,从另一方面来看,两个物体绑在一起以后的质量应该比任意一个单独的物体都大,那么整个系统下落的速度应该最快。这个矛盾证明了亚里士多德的理论是错误的。

解读:

这个思想实验帮助证明了一个很重要的理论:无论物体的质量,不考虑阻力的情况下,所有物体自由落体的速率都是一样的。

引用完毕。

das曰:
人类历史上最成功的一个思想实验,一根手指头都不用动一动,就击败了亚里士多德。
亚里士多德错了。

其他无话可说。

 

 

 

十个著名悖论的最终解答(七).猴子和打字机(Monkeys and Typewriters)

引用:
另一个在流行文化中占了很大分量的思想实验是“无限猴子定理”,也叫做“猴子和打字机”实验。定理的内容是,如果无数多的猴子在无数多的打字机上随机的打字,并持续无限久的时间,那么在某个时候,它们必然会打出莎士比亚的全部著作。猴子和打字机的设想在20世纪初被法国数学家Emile Borel推广,但其基本思想——无数多的人员和无数多的时间能产生任何/所有东西——可以追溯至亚里士多德。

解读:

简单来说,“猴子和打字机”定理是用来描述无限的本质的最好方法之一。人的大脑很难想象无限的空间和无限的时间,无限猴子定理可以帮助理解这些概念可以达到的宽度。猴子能碰巧写出《哈姆雷特》这看上去似乎是违反直觉,但实际上在数学上是可以证明的。这个定理本身在现实生活中是不可能重现的,但这并没有阻止某些人的尝试:2003年,一家英国动物园的科学家们“试验”了无限猴子定理,他们把一台电脑和一个键盘放进灵长类园区。可惜的是,猴子们并没有打出什么十四行诗。根据研究者,它们只打出了5页几乎完全是字母“s”的纸。

引用完毕。

Das曰:
二十年前第一次看到这个思想试验,是在一个日本人写的小册子里。名字忘了,是《五角丛书》中的一本。十年前翻箱倒柜找这本小册子,未果。谁如果保存着二十年前那本五角丛书的话,不妨转让给das,你五毛钱买的,我出一枚袁大头,或者一个紫砂壶也行。

不需要无限多个猴子,不需要无限长的时间,房间里放一台打字机,然后关一只猴子进去,猴子碰巧也会跳到打字机上,碰巧也会打出几个字母,有人计算过,假以2000亿年,从概率上讲,猴子会打出一首莎士比亚的十四行诗。
这道理很简单:猴子随意踩踏打字机,总会打出一些字母,这些字母随意组合,只要字母足够多,总会有一些单词,只要单词足够多,总会有一些句子,只要句子足够多,总会有一些有意义的句子,有意义的句子足够多,总会有一首诗,诗足够多,总会有一首十四行诗,十四行诗足够多,总会有一首和莎士比亚的作品一摸一样。

这道理简单明了,就是一些概率和排列组合的简单计算。

但是我有一点想不通,猴子比大自然聪明多了,人体比十四行诗复杂多了,猴子胡蒙瞎碰,打一首十四行诗都要2000亿年,大自然胡蒙瞎碰,打造个人体却只用了50亿年。究竟是我疯了,还是达尔文疯了?

现在还不清楚,反正两个人总有一个疯了。

 

 

 

十个著名悖论的最终解答(八)中文房间(The Chinese Room)

引用:
“中文房间”最早由美国哲学家John Searle于20世纪80年代初提出。这个实验要求你想象一位只说英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸、铅笔和橱柜。写着中文的纸片通过小窗口被送入房间中。根据Searle,房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。
解读:

Searle创造了“中文房间”思想实验来反驳电脑和其他人工智能能够真正思考的观点。房间里的人不会说中文;他不能够用中文思考。但因为他拥有某些特定的工具,他甚至可以让以中文为母语的人以为他能流利的说中文。根据Searle,电脑就是这样工作的。它们无法真正的理解接收到的信息,但它们可以运行一个程序,处理信息,然后给出一个智能的印象。
引用完毕。
“中文房间”问题足够著名,这是塞尔为了反击图灵设计的一个思想实验。
机器可以有思想吗?这是一个老的不能再老的问题。图灵问:“有思想”是什么意思?我说它有思想,你不承认怎么办?我们怎么判断一台机器是不是有思想?
于是图灵设计了一个“图灵测试”,图灵认为这是一个可操作的标准——如果机器通过了这个测试,我们就应当承认它有思想。
图灵测试是这样的:把一个等待测试的计算机和一个思维正常的人分别关在两间屋子里,然后让你提问题,你通过提问,通过分析机器和人对你的问题的回答来想办法区分哪一个是机器,哪一个是人。如果你无法区分,那么,这台机器就通过了测试,就证明这台机器和人一样具有思维,有思想——这是一台会思考的机器。

塞尔用中文房间这个思想试验反击图灵——事实上这确实彻底击溃了图灵。
中文房间应当这样说才是正确的:一个不懂中文的人(西方人认为中文就像天书一样难以理解,如果他认为你的话难以理解,就会说:你说的简直就是中文!)被关在一间封闭的屋子里,屋里有一个完整的中文对照表——任何一个中文句子都对应一个其他的句子,事实上对应的那个句子是前一个句子的答案。你可以用中文向这个人提问,问题写在一张纸条上传给这个人,这个人只要查找对照表,找到对应的中文句子传出来就行了。那么,这个完全不懂中文的人,确实像一个精通中文的一样回答一切中文问题,但是他丝毫不“知道”任何一句话的意思。
在此基础上,有人提出了更强烈的反击:把爱因斯坦对任何一个问题的回答汇编成一本书,那么你拿任何一个问题去问爱因斯坦,与翻着本书会得到同样的答案,现在我们能说这本书像爱因斯坦一样会思考吗?

所以转了一大圈,我们还是要回过头来重新审视前面说过的第二个悖论——空地上的奶牛,要重新审视柏拉图的JTB:什么是“知道”?“知道”是什么意思?

 

就像欧几里得几何学中最基本的公理是不能证明的,最基本的概念也是不能定义的。你定义一个概念必须使用其他概念,如果你的定义是合理的、适当的,而不是胡扯蛋,那就要求你使用的概念比被定义的概念更基本。“知道”这样的概念就像“时间”,你不问我,我仿佛完全明白这是什么意思,你要求给出一个定义,世界上却没有人做得到。
按照郭伦凯郭尔的观点:对于那些最近本的概念,你不能定义,但是你可以举例说明。我们刚刚诞生的时候脑袋里没有任何概念,也就不能定义任何东西,但是我们仍然能够形成概念,靠的就是具体的事例。定义能够很好地形成概念,举例也行——这是没有办法的办法。

有人认为我只要看见一件东西我就会知道,那么你要面临以下的困难:
镜子里反映了一只手机的影像,但是镜子并不知道那里有一只手机。
手机的影像反映到我的眼睛了——这与反映到镜子里没有任何区别——然后变成电信号通过神经传导到大脑里,这时候我就知道了这里有一只手机。
问题是:手机的影像反映到摄像机里,然后变成电信号传导到电视机里,电视机为什么不知道那里有一只手机?

下面的问题更尖锐:
假如我像流行小说中说的一样穿越时空跑到秦朝,我拿着手机给秦始皇看:“大王,你看这是什么?”秦始皇会怎么回答?
“我不知道。”
秦始皇明明亲眼看见了手机,他为什么“不知道”呢?

Das曰:除非你脑袋里头首先有必要的相关知识、概念,并且能够使用这些知识、概念对感觉到的事实、现象、真理进行分类整理、分析判断,得出相应的结论,否则你不可能“知道”任何东西。
显然这是康德的观点,但是这不是康德发明的。柏拉图就是这样说的,不可思议的是这观点竟然得到他的徒弟亚里士多德的赞同——这是很不寻常的事。亚里士多德整天扯着喉咙高喊:“我爱我师,但我更爱真理。”只要是柏拉图说的,亚里士多德总要踩上几脚。亚里士多德不可能轻易同意柏拉图的观点,如果他同意了,那肯定是不得不接受。亚里士多德何许人也?当然,我不反对你挑战亚里士多德挑战不了的东西——你虽然没有亚里士多德聪明,毕竟比他有知识的多。

现在我们来看看秦始皇为什么“不知道”:秦始皇脑袋里没有“手机”这个概念,没有关于手机的相关知识,所以他看见一只手机,也不知道这是手机。秦始皇有“物体”、“东西”的概念,他知道这是一个硬的、长方体的东西,但是他不知道把手机这个东西归为“东西”下边的哪一个分类,更不知道它的性质、特点和用途,所以,秦始皇“不知道”手机是什么。

总之,一台计算机无论多么先进,它没有概念、没有知识,它不可能“知道”任何东西,当然永远不可能思考。小孩刚出生的时候脑袋里也没有任何概念和知识,但是他却能够自己形成基本的概念和知识,这一切是怎么可能的?不知道!柏拉图说他生前在绝对的世界中拥有绝对的知识,出生以后他能够隐隐约约地回忆出一些来——这显然是胡扯蛋;康德说这些知识是与生俱来的,不依赖任何经验——这显然是废话,和不说没有什么区别。你非要问这些知识是哪里来的,那么请你参阅das的《童言无忌——我是谁》系列。这篇文章还没有写完,所以没有人完全“知道”。我们知道的是:刚出生的小孩能够在没有任何知识和概念的前提下形成一些基本的知识和概念,人类其他一切知识都建立在这些基本知识的基础之上,这是一个事实。我们虽然知道这个事实、这个真理,但是我们不知道这是通过什么方法和途径怎样完成的,因而我们没有相关的知识。强人工智能的梦想可以到此为止了。你要想让电脑思考,必须给它建立概念和知识;你要想给它建立概念和知识,它必须首先拥有基本的概念和知识,这些基本的知识它只能自己建立起来,你不能给与它——正如你不能给与一个小孩和一只猫。你要想让电脑自己建立基本知识,必须首先明白小孩是怎样完成这一切的,要明白这一切需要什么前提和条件,然后才能考虑把这一切移植到电脑上是可能的还是不可能的。现在我们连小孩怎样建立基本概念都一无所知,谈论强人工智能无异于痴人说梦。

 

 

 

十个著名悖论的最终解答(九)薛定锷的猫(Schrodinger’s Cat)

引用
薛定锷的猫最早由物理学家薛定锷提出,是量子力学领域中的一个悖论。其内容是:一只猫、一些放射性元素和一瓶毒气一起被封闭在一个盒子里一个小时。在一个小时内,放射性元素衰变的几率为50%。如果衰变,那么一个连接在盖革计数器上的锤子就会被触发,并打碎瓶子,释放毒气,杀死猫。因为这件事会否发生的概率相等,薛定锷认为在盒子被打开前,盒子中的猫被认为是既死又活的。

解读:

简而言之,这个实验的核心思想是因为事件发生时不存在观察者,盒子里的猫同时存在在其所有可能的状态中(既死又活)。薛定锷最早提出这个实验是在回复一篇讨论量子态叠加的文章时。薛定锷的猫同时也说明了量子力学的理论是多么令人无法理解。这个思想实验因其复杂性而臭名昭著,同时也启发了各种各样的解释。其中最奇异的就属“多重世界”假说,这个假说表示有一只死猫和一只活猫,两只猫存在在不同的宇宙之中,并且永远不会有交集。
引用完毕

Das在很多帖子里多次谈到薛定谔的猫,这个悖论的重要性不言而喻。薛定谔的猫和麦克斯韦的妖并列为科学史上的两大奇观。不同的是麦克斯韦的妖是一个已经解决的问题,薛定谔的猫至今仍悬而未决。有人说薛定谔猫态在介观尺度早已实现了,有人说哥本哈根解释早已崩溃了,公说公有理,婆说婆有理。很多人不愿意介入这场争论——尽管这是现阶段人类面临的最为重要的问题——不是他们不感兴趣,而是他们根本不愿意花费数年的生命去搞清楚量子力学的基本原理。
Das曾经立志要让毫不懂得量子力学的人在二十分钟之内了解薛定谔的猫,可是我失败了。失败了不要紧,我们从头再来。这一次das不再用现实世界中的例子来比喻,而是用一个如假包换的量子力学的真实事例来说明:
氦原子在元素周期表里排在第二位,它有两个电子。两个电子处于同一个能级,两个电子都在第一层(K层),——按照传统的说法:它们处在同一个轨道上。按照量子力学的说法,这两个电子的“轨道波函数”完全一样——是“对称的”,你别管轨道波函数是什么意思,它就是一个函数,描述电子在轨道上的运动状态。完全描述一个电子的运动状态,光有“轨道波函数”还不行,电子还有一个内在的性质——自旋,用“自旋态”来描述,自旋态不是朝上就是朝下。
量子力学中有一个重要的原理——泡利不相容原理,说的是一个原子中不可能有两个轨道和自旋完全一样的电子(不仅是电子)。如果它们轨道一样——“轨道波函数”一样,“轨道波函数”是对称的,自旋就肯定不一样,自旋肯定“反对称”。
“反对称”是什么意思?
反对称在数学上十分清晰,十分容易理解,但是它的物理意义却没有人说的清楚。氦原子中的这两个电子由一个波函数描述,假如把这两个电子相互替换,替换以后这两个电子组成的系统又有一个波函数描述;如果这两个波函数是一样的,那么这两个电子之间的关系就是“对称”的;如果这两个波函数符号相反——它们的相位因子(你不用管这个概念是什么意思)一个是+1,一个是-1,那么这两个电子之间的关系就是“反对称”。不相容原理要求氦原子中的这两个电子必须是反对称的。
用我们的笨脑子来考虑,这两个电子自旋不是朝上就是朝下,有四种可能性:A上B下;A下B上;A上B上;A下B下。后来两种肯定不行,两个电子自旋状态完全一样;问题是前两种一样不符合要求。如果是A上B下,A、B互换,就成了A下B上。还记得我们在“特修斯之船”中说过的量子力学的全同原理——所有的电子性质都完全一样,A上B下与A下B上没有任何区别,这不符合反对称的要求。
所有四种可能性都不符合要求,现在怎么办?要么说清楚这件事,要么放弃量子力学。量子力学这样解释这件事儿:
这两个电子的自旋肯定一个朝上,一个朝下,但是我们不能明确指出具体哪一个朝上,此时,两个电子不是明确地处于A上B下或者A下B上的状态,而是出于二者的“叠加”状态、“纠缠”状态,用数学表示出来就是:R=1/根号2(A上B下一A下B上)这么一个稀奇古怪的状态。这时候你将A、B互换,就成了:Q=1/根号2(A下B上一A上B下)=-1/根号2(A上B下一A下B上)=-R,这就出现了-1的相位因子,符合了“反对称”的要求。

 

狄拉克说:“量子力学的主要特征是什么?现在我倾向于认为,量子力学的主要特征不是不对易代数,而是波函数(概率幅、几率幅)的存在,波函数的模方是观测到某个量的概率,但此外还有个相位,它是模为1的数,其变化不影响模方,但此相位是极其重要的,它是所有干涉现象的根源,而其物理含义极其隐晦难解。”

“纠缠态”、“叠加态”真的存在吗?或者仅仅是数学对我们不了解的原因给与了近似的描述?
很少有人否认存在一个不依赖我们观察的客观物理世界。我们希望对这个奇怪的世界有一个清晰的解释,并且希望这解释不依赖超自然的前提、本身不包含矛盾。在没有人观察的时候,薛定谔的“魔鬼箱子”里粒子到底衰变了还是没有衰变?按照人类现有的逻辑思维方式:它要么衰变了,要么没有衰变——二者必居其一。但是这不符合量子力学的基本要求,如果真的二者必居其一,量子力学就无法解释双缝干涉实验;按照量子力学的要求,你必须认为这个粒子既没有衰变,也不是“没衰变”,而是处于“衰变”和“没有衰变”这两种状态的“叠加状态”。问题是这种状态不仅我们从来没有见过,要命的是这根本就是不可想象的——无论你想象力多么发达,无论如何也想象不出“既衰变了同时又没有衰变”究竟是一个什么样状态。就算我们从来没见过粒子,我们不能想象粒子奇怪的行为,但是我们见过猫——薛定谔的猫处于“既死又活、既不死又不活”的状态是绝对不可能的。

 

只要你不去追问数学公式的物理意义是什么,量子力学就没有什么问题。其中的数学推导过程简单、优美而又清晰,费曼非常简洁地揭示了量子力学的基本方法:在量子力学中,一个“事件”,就是一套初始条件和终止条件——不多也不少。(就das的阅读范围来看,这句话应当是爱因斯坦原创。)
电子从电子枪出发,经过小孔到达检测器,这就是一个事件A。这个事件A发生的概率由一个数的平方决定——这个数就是薛定谔方程中的波函数Pis,事件A发生的概率就是PisA平方。如果事件发生的方式不止一种(电子枪与检测器之间不止有一个孔——比如两个孔同时打开,事件A的发生就存在两种可能的方式:电子通过这个孔或者通过那个孔到达检测器。)事件A以任一可能的方式发生的概率(通过这个孔或者那个孔到达检测器的概率)为Pis1、Pis2,那么事件A真正发生的概率就是PisA平方=(Pis1+Pis2)平方=Pis1平方+Pis2平方+2Pis1Pis2。你非要问这个电子究竟通过了哪个孔,量子力学只能告诉你:我们不知道——在某种意义上,这一个电子似乎同时经过了了两个孔,而且我们不知道“某种意义”意味着什么。初始条件和终止条件就是一个事件的全部,给定了初始条件:一个电子从电子枪出发,有可能经过了两个孔到达检测器,经过每一个孔到达检测器的概率为Pis1、Pis2,那么量子力学就能够告诉你终止条件:PisA平方=(Pis1+Pis2)平方=Pis1平方+Pis2平方+2Pis1Pis2。2Pis1Pis2是干涉项,它导致了干涉条纹的发生。这就是事件A的全部,你问这个电子究竟通过了哪一个孔,这既不是初始条件,也不是终止条件,所以这根本就不是事件A的一部分。

如果你在小孔中做一次观察——看一看究竟哪一种可能性实际上发生了,而且确实被你看到了电子通过哪一个孔,那么事件A就不再是一个事件,而是两个事件:电子从电子枪出发到达小孔1并且被你观测到,这是一个事件;电子从小孔1被你观测到至电子到达检测器被你观测到,这又是一个事件,如果电子通过小孔1被你观测到,然后到达检测器的概率为Pis1,电子通过小孔2被你观测到,然后到达检测器的概率为Pis2,那么事件A(电子到达检测器)发生的概率就是:PisA平方=Pis1平方+Pis2平方,这里没有干涉项2Pis1Pis2,也就没有干涉条纹。

只要你不问其中的含义,这些数学公式清晰简明,论证有力,量子力学不存在任何问题。你非要问这个奇怪的世界为什么是这个样子,为什么我们不观察或者观察不到——我们不知道电子通过了哪一个孔,PisA平方就等于(Pis1+Pis2)平方=Pis1平方+Pis2平方+2Pis1Pis2。我们只要观测到了或者知道了电子经过了哪一个孔,PisA平方就变成了Pis1平方+Pis2平方,这一切是怎样发生的?为什么会这样?及时聪明绝顶如费曼,也不得不回答:我们不知道。

电子的行为为什么和我们知道不知道有关?我们知道不知道如何改变电子的行为?什么是“知道”?“知道”究竟是什么意思?
我们又要回到那个老问题,我们曾经在“空地上的奶牛”和“中文房间”两个问题的讨论中认真反复地对待这个问题,现在看来什么是“知道”远比我们已经讨论的重要得多、复杂得多。

但是乐观主义者认为没有什么难题能够阻止聪明的脑袋,让我们抖擞精神,从头来过

10.缸中的大脑(Brain in a Vat)
没有比所谓的“缸中的大脑”假说更有影响力的思想实验了。这个思想实验涵盖了从认知学到哲学到流行文化等各个领域。这个实验的内容是:想象有一个疯狂科学家把你的大脑从你的体内取出,放在某种生命维持液体中。大脑上插着电极,电极连到一台能产生图像和感官信号的电脑上。因为你获取的所有关于这个世界的信息都是通过你的大脑来处理的,这台电脑就有能力模拟你的日常体验。如果这确实可能的话,你要如何来证明你周围的世界是真实的,而不是由一台电脑产生的某种模拟环境?

友情提醒: 如果你看到这里 证明你已经看完了    申明  此文是网上一字不差的扒下来的  没有任何修改 不是怕您笑  楼主自己都没看完呢  只是提醒大家  大家可以发表自己的意见 但不要过于激进 不要带有任何感情和攻击色彩 没有这个必要 不说大道理了 任何爆点 源于争论 激烈的争论 鼓励大家提出不同的意见 但不要互相攻击 即使你攻击楼主 楼主绝不会回复 希望大家都能心平气和的 谢谢大家

Five (math) things to do before you die

Five (math) things to do before you die

An interesting question was posed to me recently. If you were told you were going to die tomorrow, which 5 math topics/questions would you be most sad you never got to learn about/have answered? First of all, I must admit I freeze any time people ask me to rank my top five anything. It feels so final, and I really want to think about it carefully before I answer. Also, honestly, if I were told I had 24 hours to live I would be sad and upset but probably not about the math I was going to miss. But that is not the point of the question, I guess. In this post I will attempt to answer this question, with full awareness that I may change my mind in a few days. But I will also pose a few other questions and then leave it to you, my readers, to ponder them.

1. My immediate response to the question was the Riemann hypothesis. Not that given 100 more years to live I would have any hope of solving this problem, but I would like to see it proved in my lifetime. Especially because we are all pretty certain that it’s true.

Of course, then one can go through the list of Millenium Problems and I would add two more things:

2. the Birch and Swinnerton-Dyer Conjecture, and

3. the P vs NP problem.

Again, I am not saying I have any chance of solving them, just that I would like to see the solutions to these problems. But this is where it gets tricky. I basically have a list of three things that probably anyone could have made (these are some of the most famous problems in math!). So how do I add two more things to it? Nothing will seem as important (nothing else I can think of would make you a millionaire!). OK, there are three other millenium problems, but I’m just not as interested in them. So then I started thinking about the math topics I would be sad not to have learned if I were to die tomorrow.

4. I have gotten interested in mirror symmetry and its relation to physics and number theory, so I guess I would be sad if I died tomorrow without learning more about it.

5. Arithmetic dynamics, since I am very interested but kind of new to it.

But doesn’t the list become weak after I add these two things? Anyway, please share your Top 5 in the comments below.

The original question got me thinking about other fun questions on might ask:

– Which 5 math books would you take to a desert island? The funny thing is that I can’t think of a top 5 but I can always think of at least one or two things. For example, I would bring Serre’s A Course in Arithmetic. But of course, if you asked me to bring just one I would be stuck.

– Who are your Top 5 mathematicians of all time? Gauss? Ramanujan?

-Slight variation: which 5 mathematicians would you take to a desert island? See, here I would probably pick some fun/handy mathematicians. I don’t know if Gauss would be very good at building a hut.

– What are the best 5 math formulas? Euler’s formula is widely regarded as one of the most beautiful formulas in mathematics. Do you agree? Can you think of others?

– What are your 5 favorite functions? I know one: hypergeometric functions!

As a final comment, I wanted to say the first question was suggested by my friend Casey Douglas, who is an Assistant Professor at St. Mary’s College of Maryland. He thought of this question as he was preparing a talk for the SMCM math department’s annual “MATH WEEK OF AWESOME”, which sounds, indeed, awesome.

So now I open it to you. Do you have answers to these questions? Do you also find it slightly frustrating when these questions are posed (if so, I apologize)? Can you think of other questions like this?

– See more at: http://blogs.ams.org/phdplus/2012/03/23/five-math-things-to-do-before-you-die/#sthash.y1aLpLP5.dpuf

http://blogs.ams.org/phdplus/2012/03/23/five-math-things-to-do-before-you-die/