Category Archives: 数学界的八卦

从对数学的贡献上来讲,丘成桐有多厉害?

作者:匿名用户
链接:https://www.zhihu.com/question/33463090/answer/116836782
来源:知乎
著作权归作者所有,转载请联系作者获得授权。

补充一下某匿名用户的回答。他只是说了大方面,我来给大家补充一点细节。这些故事都是笔者多年来从不同渠道收集到的,虽然未必准确,却能很好地反映出丘先生高尚的人品,卓越的才能,和为祖国数学事业无私奉献的精神。

1.丘成桐教授不仅有数学才华,还很有商业天赋。他在Boston地区有三十多套房产。因为Harvard是个很有钱的学校,所以有很多闲置的房产,他们会用极低的价格把这些房产卖给教授。丘成桐教授以其杰出的商业眼光,前前后后一共买了三十多套,租给他的博士后,每年盈利不可胜计,真是令人钦佩!后来丘教授又看中了一处房子,但是学校却不愿意批准卖给他,所以他让当时是系主任的Ben Gross教授去询问缘由,后来Gross说,学校得知你在Boston地区有三十多套房产,实在太多了,所以不能卖给你。大家知道,在数学界,要想组织seminar和conference,经费是必不可少的。正因为丘教授有杰出的商业头脑和投资眼光,所以为中国数学的蓬勃发展输入了大量的物质财富,可谓是中国版的Simons。但是他的数学水平又远胜Simons,所以丘教授无愧为古往今来第一大师!

2.丘教授通过这些seminar和conference让大量的中国年轻数学家有了抛头露面和展示自己的机会。虽然这些年轻人的数学水平只可意会,但是相信通过丘教授的帮助会很快发展成为华人数学界的领军人物,继承他的资源和衣钵。近年来,丘教授在中国大陆,中国香港和台湾地区设立了大量的研究所。这些研究所的设立不但给不少人提供了很好的工作机会,也给不少想学数学的年轻人提供了优秀的平台。比如清华大学的丘成桐数学中心,可以说是亚洲第一数学中心,连日本京都的RIMS都是远远不如的,我想即使放到宇宙上也是名列前茅的。在这里我们应该特别欢迎广大二本和三本的数学系学生报考这些研究所,因为丘先生的理念就是要给普通高校热爱数学的学生以机会。

3.丘教授每年都到中国的各所高校讲学,尤其是他开设的几个数学中心,这些讲座传授给年轻人许多高深的数学知识和实用的数学技巧。他演讲的话题包括:数学之美、我的成功经验、Harvard数学系的历史和我的一个不听话的学生等等。内容丰富,发人深省,不但能从中学到数学知识,还能体会到许多做(中国)人的道理。可悲的是,一些反动派受到西方自由思想的荼毒,对这样高质量的讲座却视而不见,拒绝参加,其中包括一些数学界的同行。丘教授知悉此事后,给这些人发了一封邮件,明确要求他们:今后只要是我来你们学校做讲座,所有中国人就必须参加!丘先生的严厉做法很好地整肃了华人数学界的风气,提高了凝聚力。相信在丘先生的领导下,大家一定能鼓足干劲,力争上游,多快好省地建设中国数学!

4.丘教授亲自培养的许多学生都有极高的数学水准,在国际上获得广泛承认,多次荣获重大国际奖项,比如晨兴数学奖、新世界数学奖、陈省身奖之中国版等等。这些学生不仅自己水平惊人,对年轻人也提供了无微不至的关怀和细致周到的帮助。比如,丘教授的不少学生害怕学生没有自己的想法,经常亲自给学生提供idea,来帮助学生找到研究的思路。即使学生不需要也要苦口薄心,再三敦促。这样一来,不仅学生可以发paper,他们自己也因为贡献了一个“关键的”idea而顺便加到了名字,可谓是一举两得的做法。丘教授另一些学生因为害怕国际上一些著名杂志的编辑是势利眼,不让年轻学生单独发paper,所以不惜牺牲自己的名节,主动要求在paper上加名字。这样一来,学生发文章的时候就不会吃亏了。他们为学生的付出令人感动。可悲的是,一些年轻人不但不知道感恩,反而对此感到苦恼。对这样的人,我们就应该毫不犹豫地把他们踢出华人数学界,让他们去落后的西方世界吃点苦头!

5.丘教授掌握了国际上一本极为重要的数学杂志,即Journal of Differential Geometry。这本杂志现在成为许多年轻人展示自己只可意会的数学水平和找到教职的最佳平台。为了方便某些中国学生在杂志上发表论文,丘教授提供了一些非同寻常的便捷渠道。比如文章不用发给编辑,可以直接发给自己,再由他转发给编辑。这样一来,中国数学家的文章就经常出现在顶级杂志上,他们的研究水准得到了空前飞跃!丘教授控制的另一本杂志就是大名鼎鼎的Asian Journal。这本杂志上发表了人类在20世纪到21世纪一些最伟大的数学工作,比如朱熹平教授和曹怀东教授对Poincare猜想的最终证明,封顶了人类一百余年来悬而未决的难题。这篇文章长达300多页,但是经过Asian Journal的编辑不知疲倦的辛勤工作,该论文在极短的时间内就获得了发表。可以看到,丘教授在经营杂志以后,杂志审核文章的效率大大提高了。可以说,正是丘教授勤劳刻苦,生命不息,奋斗不止的精神感召了这些编辑,让他们不再玩忽职守和放松懈怠。

6.丘成桐教授对自己学生的关怀可以说是无微不至。有些学生一时糊涂涉嫌抄袭和剽窃,丘教授知道以后果断采取措施,息事宁人,避免了家丑外扬。中国数学界正是在丘先生的努力下才能铁板一块地团结在一起,大家毫无私心,全心全意为中国数学的发展添砖加瓦。但是有些人却不明白丘教授的苦心,经常在丘教授面前投诉,甚至还写匿名信把事情闹到别的学校。对此,丘教授态度坚决,铁面无私地无视了这些无理要求,可以说很好地体现了一位领袖的英明果决。而那些闹事的逆流虽然可能有一点点数学水平,但是今天也没办法站出来领导数学界了。就是因为某些人只知道做研究和思考数学问题,没有意识到帮助中国数学发展才是更有意义的事。思想境界比起丘教授差的太远了。可以说,丘先生高瞻远瞩,气盖环宇,数风流人物,还看今朝。

7.丘教授对中国学生的关心不仅仅局限在数学系,还遍及到各个非数学领域。从前,只要是中国、香港和台湾去Harvard读数学的学生,丘教授都要亲自过问,热情关怀,把他们一一纳入自己门下。比如某学生要跟Taubes,他会亲自找到Taubes,告诉他,这位学生就托付给你了。这样一来,这些西方数学家慑于丘先生的气魄和威望,就不敢再歧视中国学生了。到了后来,只要去Harvard的中国、香港和台湾学生,无论学什么专业,丘先生都要跟他们打交道。据说他还曾经举办过大型party,邀请Harvard商学院大中华地区的所有学生参加。这些活动使他亲民的形象更加突出,在各界广受好评。相信不久的将来,丘教授会吸引到亚洲其他地区的学生参与他的party。像他这的一代王者,相信任何人都会被他的魅力所感召。毕竟只有深入到人民群众中去,才能发现问题所在。丘教授真不愧为一代明君!

8.丘教授虽然已经接近70高龄,仍然老骥伏枥,近年来在数学研究上非常活跃。仅2015一年就在arxiv贴文23篇,以每个月两篇论文的速度进行高质量的数学研究,这是古往今来其他任何数学家都望尘莫及的!要知道,丘教授作为华人数学界的领袖,每天要处理几百封邮件。熟悉丘教授的朋友们都知道,即使是在seminar上他也要一边摁手机收发邮件,一边听talk。能在如此繁忙的情况下一个月写两篇论文,效率之高真是令人震惊!丘教授还特别注意与年轻人的合作,近年来每篇论文几乎都要提携一些年轻数学家,大度地和他们一起署名发表。由于他提携的年轻数学家太多,很多时候甚至会忘记自己的合作者。比如某韩国数学家之前跟他有合作,到了找教职的时候希望丘教授能帮自己写推荐信,但是丘教授却坦言自己并不认识对方。实际上,丘教授不认识自己的合作者正可以反映出他已经帮助了太多年轻人,以至于自己都想不起来自己干的那些好事!范仲淹说:云山苍苍,江水泱泱,先生之风,山高水长。丘先生年近七旬而笔耕不辍,真可谓吾辈典范!

9.丘成桐教授对于人才优劣的判断也是明察秋毫,一望即知。早先,北大一个学生仗着自己是那一届最优秀的就自不量力,想要去Harvard跟丘教授学数学,丘教授对他说:你水平不行。想跟我也可以,先去Boston待两年,经我考察合格了,再来跟我。这个学生不得已之下去了另一个inferior的学校跟了一个比丘教授差了十万八千里的数学家M。事实证明,这个学生现在虽然出了一点小名,在Yale做教授,但是确实不够资格在Harvard做丘教授的学生:因为他只拿到了晨兴数学银奖,而丘教授的学生一般都是拿金奖的。
还有一次,丘教授的学生,国际著名数学家刘教授的一个学生L经刘教授推荐去Harvard师从丘成桐教授,而刘教授另一个学生不服,认为自己比L优秀。他给丘教授发邮件针对此事发了一大堆牢骚,丘教授立刻把他的邮件转发给了刘教授,叫刘教授严加管教。而事实证明,虽然这个学生目前在自己的领域是一个优秀的数学家,但是比起L来差的太远了,因为后者后来解决了国际上多年悬而未决的Hopf猜想,即使在历史上也要留名的。值得一提的是,L不仅数学了得,他满腔的爱国情怀也令人感动。有一次,Harvard一位教授不小心把台湾说成是一个国家,L立刻站起来,义正辞严地告诉该教授:“台湾是中国不可分割的一部分!”像这样品学兼优的杰出青年正是建设祖国数学事业所需要的人才啊!如果不是丘教授乾纲独断,岂不失之交臂?
像丘成桐教授这样慧眼识金的伯乐正是中国数学界最需要的伟大领袖。只要有了他,没有一个人才会被埋没,没有一个庸才可以投机。野无遗贤,万邦咸宁。天降丘神,万物生明!
——————————————–
先写到这里,丘先生的贡献还有很多,许多细节的地方因为空白太小,都已经写不下了,有待日后慢慢总结整理。作为丘教授的铁杆粉丝,我要告诉学数学的年轻人一个简单的道理:没有丘成桐教授开天辟地,创造了数学这个领域,哪来你们今天的归宿?所以,学好数学固然重要,但是更重要的是坚持丘教授在中国数学界的领导地位,紧密团结在他的周围,为早日把中国建设成数学强国而奋斗!军民团结如一人,试看天下谁能敌!

Advertisements

[转载]痛批计算数学所

发信人: rodm48gmf (—>—>—>—>—>—>—>—>—>—),

信区: D_Maths

标 题: 老板痛批计算数学所 (转)

发信站: 南京大学小百合站 (Sat Oct 11 15:59:23 2014)

昨天讨论班上,一位师兄就博士论文向老板咨询。老板语重心长的说:现在好歹也是博士了,论文里必须要有些自己的东西,能拿别人的东西拼凑!接着话锋一转,说道:最近中国的大飞机搞得很热闹,发动机是别人的不算,连自己测试出来的飞机模型数据因为没 有算法也不会算,只好花了6000万美金问老美买软件。但美方条件相当苛刻,要求中方把初始数据的备份拷给美方,等美方分析完了,再把最终结果告诉你,中间过程没法看到。 这下可好,不但算法核心没法掌握,连同我们的飞机性能也让人家了如指掌了,不用侦查卫星,就把你查个底朝天。

老板接着说:回头看我们的计算数学所,近几年来对数学理论本身的要求越来越弱化。招的学生在本科就学些计算数学专业的数值分析,数学软件。到了研究生阶段,只看见天天 泡在电脑前面敲键盘、调试程序,写出的算法无非是对已有的东西小打小闹,根本没有理论深度。也不是他不花功夫,是实在是层次太低,别说微分几何、代数拓扑这些常规的东西都不懂,即使是本科的数学物理方程,真正学好的人也没几个。对偏微分方程的认识皮 毛也谈不上,你说他怎么写的出好的算法。

老板还说,若把那些大飞机、卫星项目让企业来做,就更加不行了。那些工程师自从高校中出去以后,就开始吃老本,天下算法一大抄,有的甚至为了拟合精度而篡改实验数据,这样造出来的飞机、卫星能不掉下来吗?当然为了混口饭吃,这么做也并不难理解。

最后,老板说道:反观数学所,我们也没必要高兴到哪里去。可能我们这儿招的做PDE的学 生,数学物理方程还没计算所的好呢。现在国家急了,对重大计算项目特别重视,基金委拨了2亿元立项,十二五期间务必在这方面有重大突破。所以啊,不管怎么说,大家做东西 一定得有自己的想法,一步步把结果做上去!现在无论是做大飞机、还是搞卫星,都需要研究人员不仅会编写程序,还要懂得其中深刻的数学原理,可能它的理论难点就涉及某些奇点理论,这就需要大家懂微分几何、懂流形拓扑、懂奇点理论。物理背景的重要性是毋庸置疑的,量子理论作为物理的两大基石之一,处处发挥重要作用。如果我们的研究人员都具备了这样的素质,我们的科研才有希望。而中国的计算数学差就差在两点:一、没有 数学理论做依托,只会微积分和矩阵论。二、系统集成能力太差,编出Windows之类的操作系统根本不可能!

※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn

[FROM: 114.212.206.39]

Controversy over Yau-Tian-Donaldson

http://www.math.columbia.edu/~woit/wordpress/?p=6430

Controversy over Yau-Tian-Donaldson

Posted on November 25, 2013 by woit

The last posting here was about an unusually collaborative effort among mathematicians, whereas this one is about the opposite, an unusually contentious situation surrounding important recent mathematical progress.

What’s at issue is the proof of what has become known as the “Yau-Tian-Donaldson” conjecture, which describes when compact Kähler manifolds with positive first Chern class have a Kähler-Einstein metric. This is analogous to the Calabi conjecture, which deals with the case of vanishing first Chern class. Progress by Donaldson on this was first mentioned on this blog here (based on his talk at Atiyah’s 80th birthday conference in 2009). Last fall a proof of the conjecture was announced by Chen-Donaldson-Sun, with an independent claim for a proof by Gang Tian, see here. I wrote a bit about this last winter here, after the details appeared of the Chen-Donaldson-Sun proof, and that posting gives some links to expository articles about the subject.

I had heard that there were complaints about Tian’s behavior in this story, including claims that he did not have a complete proof of the conjecture and was not acknowledging his use of ideas from Chen-Donaldson-Sun. Recently this controversy has become public, with Chen-Donaldson-Sun deciding to put out a document (linked to from Donaldson’s website) that challenges Tian’s claims to have an independent proof. The introduction includes:

Gang Tian has made claims to credit for these results. The purpose of this document is to rebut these claims on the grounds of originality, priority and correctness of the mathematical arguments. We acknowledge Tian’s many contributions to this field in the past and, partly for this reason, we have avoided raising our objections publicly over the last 15 months, but it seems now that this is the course we have to take in order to document the facts. In addition, this seems to us the responsible action to take and one we owe to our colleagues, especially those affected by these developments.

I should make it clear I’m no expert on this mathematics, so ill-equipped to judge many of the technical claims being made. The Chen-Donaldson-Sun document is giving one side of a complicated story, so it would be useful to have Tian’s side for comparison, but I have no idea if he intends to respond.

On a more positive note, perhaps this controversy will not interfere much with future progress in this area, as Donaldson and Tian are jointly organizing a Spring 2016 workshop on this topic at MSRI.


Update
: I hear from Tian that he has recently written a response to the Chen-Donaldson-Sun document, which is available here, and he may at some point write some more about this. Anyone who has read the CDS side of this should also take a look at what Tian has to say in response.

6月8日聚会 张益唐问答录

6月8日聚会  张益唐问答录

王军涛:我有一个问题。我是北大毕业的,你觉得北大生活对你有什么影响?

张益唐:从本科来讲,北大养成了我严谨的(作风),给我打下了扎实的基础。但是从现在来看呢,如果还是按照北大原来那种教育方式(这也是很多人关心的就是中国现在的教育方式是好还是坏,杨振宁说好,丘成桐说不好),我认为如果现在还是这个样子的话,那显得有点太陈旧了,可能跟不上新的东西。因为北大是强调那个传统,你要把基本功打得非常非常扎实,这个东西我不否定,这是对的。但是你过于去弄这种,现在数学这几十年发展突飞猛进啊,你可能一辈子都打不完这些基本功。我承认我在做这个的时候,也有一些很新的东西inmypaper在这里头,那是最后两个引理,实际上我是很晚才补上的。在数学研究里,有的时候并不是你要告诉这个结果,一页一页一个字一个字看是怎么证明的,这可能跟技术物理还不太一样啊,有时候你要是对它有一种感觉,这个东西它的意义在哪里,你怎么去用它。我觉得中国至少原来的大学教育(现在的我不敢说)在这方面是比较缺的。

西诺:最近有个评论说,你在证明这个数学难题时用的是经典的证明方法,而并非是最新的数学技术,请问你为什么要采用这种方法呢,在这方面你是不是有自己另外的想法呢?

张益唐:这个取决于问题本身,看它是属于什么范围里的问题。你能够引进新的方法当然也好,但要看解决什么样的问题用什么样的方法最适合,而不是换一个新办法。这种东西用这个办法解决是有效的,但是你换另一种办法可能根本就用不上。另外他说我用的是经典的办法,其实这不对,我刚才提到在我证明最后一部分其实用的是很新的东西,前面大部分都是经典的,但最后一部分用的很新,而且是从完全不同的学科引过去的,那学科叫代数几何Algebraic Geometry,这个问题本身是数论领域的,但我用的别的东西。

HL先生:我在网上看到,你早先的博士论文是做代数几何的(张:对)。你刚才说的经典的那些是指筛法吧,(张:对)我原来记得在陈景润做1+2时,魏伊说这达到了筛法的顶峰。但你的结果说明那还不是顶峰,你能把筛法加上后来的代数几何。

张益唐:这要看是怎么评论了。因为这个问题跟陈景润所做的,尽管很相近,一个孪生素数,一个哥德巴赫猜想,但treatment还是不一样

HL先生:也许你所做的意义更大,难度可能各有千秋。但你等于是证明有这回事,让大家不要做了,以前都没有这个具体的数值,现在有了七千万这个数,至于能不能压到2是另外一回事。

张益唐:是的,有这回事,有个七千万了(指素数对的差距已缩小到此)。但能不能跟他比,我想按中国人说法就是见仁见智吧,我自己不能说做的比他(指陈景润)好。

陈小平:我脱开数学问个问题,看报道说你很长一段时间都消失了。刚才听胡平说,你除了数学以外,还有很多非“书呆子”的爱好,那么在此期间到底发生了什么事呢?为什么消失了呢?

张益唐:那段时间的事其实报道中有提到,谋生的问题暂时在那里。至于消失的话,其实在我这次出来之前,(名字)上网、上自然杂志以前,我和过去很多同学没有联系,没有时间也没心思。但现在一上了网,他们当然就找到了我。所以像这种报道呢,上海文汇报比中国青年报早两天在5月16号抢在前面报道了,讲的基本上还是符合事实,但是很多细节似乎有出入,我也不会去解释,也解释不过来。

李进进:提一个中国文化的问题。我读中文报道对你解答的问题所做的解释,不易看,可是我看胡平转给我的一篇关于你的英文报道,虽然很短但解释的很清楚。我自己也曾反思过中国的文化传统好像和现代的数学不搭架的,没有桥梁。我和儿子讨论,中国语言上也不可能和现代数学有关系,也不可能解决现代数学的问题,但我觉得假如中国的文化、语言都和现代的数学没有关系的情况之下,为什么中国人的头脑可以达到今天数学的顶峰?

张益唐:我只能说前一部分是个事实,中国的传统文化上没有产生(现代数学的因素),中国有古代数学,比如说代数,就是算,很实用。但是中国从传统上,古代数学方面根本没有产生过像古希腊那样辉煌的成果。比方说,历史上第一个研究素数的是欧几里德Euclid,他就是能够证明,用反证法,证明存在无限多个素数。我很怀疑在中国古代数学里有没有素数这个概念。再比如勾股定理,西方叫毕达哥拉斯定理Pythagoras Theorema^2+b^2=c^2\!\,,

毕达哥拉斯是把这个定理证明了,而且据说他证出来之后杀了一百头牛来庆贺。中国有勾三股四弦五这句话,但好像没有人把它作为定理证明出来。中国文化到了后来可能与政治制度有关系,聪明人都去考科举,学而优则仕去了,这可能也是一个原因。中国传统没有产生很辉煌的数学并不等于中国人就不适合搞数学,这是两回事。这里有一个很有意思的,我也没法解释为什么。中国最早搞高等数学、微积分的是比华罗庚还要早一辈的姜立夫、熊庆来,他们只是到美国、欧洲接受了我们现在大学本科一般的数学教育,回国后中国也有自己的数学教育了,很快下一代就有一批中国人,在数论就是华罗庚,在几何学是陈省身,马上就表现出在世界上他们是第一流。日本也是这样的,明治维新19世纪后半期以后也是派出一批最优秀的人学习现代数学,后来就成为世界上著名的数学家。所以一个民族有好的数学传统的话,对数学会是一个推动,而且推动力会很大。但反过来讲,如果一个国家、民族原来缺少数学传统的话,并不能推出以后一定出不了大的数学家。

张菁:你是中国民联最老的成员,我非常荣幸今天看到这么多民联的老成员在这里,前主席徐水良也来了,这很少见。我的问题是,你对中国民主运动还有什么兴趣去关注,你对中国民联有什么寄望吗?

张益唐:第一,我不是民联很早的成员,不算太早,1989年那时加入的;第二,我作为一个独立知识分子,我的政治理念不会改变,也不会因为大陆不管是捧我还是怎么对我,我的基本理念不会改变。至于具体参与,因为现在我也很长时间没参与了,我想将来也没有太多机会去参与。

(众插话:还是好好去做数学。)

金钟:您有没有可能在三分钟之内用中文再给我们说一遍,您这次解决的数学难题究竟是怎么回事?

张益唐:首先,我们知道什么是素数,它是只能被它自身和1整除。我证明存在一共有无限多素数对,他们之间的差呢不会超过7千万。

杨巍问:你以后有没有这样的研究方向,就是把这个数(素数对之差)再缩小,因为它有下限是2嘛?

张益唐:关于我的办法,我在论文里不断用considerably reduce,就是还能再缩小很多很多,这是肯定的。我自己也试过,就是我这个办法到底能减到多少,但最后太复杂了,我太累了就算了。但仅限于我的办法是不可能减少到2的。具体能减到多少呢,我现在也说不出来。

王军涛:你今天能不能也提出一个猜想?

张益唐:没有猜想,但我倒是有个现实面对的问题,怎么样能出名了后还不受干扰?

王军涛:胡平刚才已经讲了,你有这个素质。

李进进问:你解决这个问题的意义到底是什么?

张益唐:我只能说,这是一个纯理论性的问题,没有什么意义。Google请我到纽约大学去讲,我不敢接受,就是怕他们问我这个证明有什么实用价值。这样纯理论性的问题我现在觉得一点实用价值都没有。

张先生:几年前我们在胜平家聚会时,你跟我说你在思考另外一个问题,那你现在对孪生素数猜想的解决是你顺带写出来的吗,还是你当时也在思考这个问题?

张益唐:我其实是一直在做两个问题。孪生素数想了很久没做出名堂,但去年夏天当我觉得能做出来以后,我觉得应该把别的问题先停住,因为这个问题毕竟只差了一点点,如果让别人先做出来就可惜了。我现在希望回到我原来的问题上。

张先生:数学家总是不公开说自己在做什么研究,在写安德鲁·怀尔斯证明费马大定理的书中我看到说他突然失踪了,不让别人知道他在研究那个问题,我想问数学家这样做是出于什么样的心态?

张益唐:这就是要concentration不受干扰。比如,像我是装模作样已经做出一个结果,就有人会盯我,你要做什么,下一步是什么,我只能说sorry,I don’t like it, I may not mention.我不愿意让人知道,这很正常,除非你想跟别人合作。如果你就决定单独做而不是合作的话,就不要让别人知道,否则的话噪音会太多。我想数学是这样,别的学科我不知道。

王军涛:你在做出这个结果之后,获得这么多赞誉,你自己内心发生什么变化没有?

张益唐:我觉得我的内心没有任何变化。因为有这样一个前提,我刚才说为什么高兴:为我能解决它而高兴,为它能很快得到承认而感到高兴,第三就是正如普林斯顿的教授Peter Sarnak所说以前离这个证明只差头发丝一样短的距离,几年前很多人都想做这个问题,但几年下来别人都giveup了,但我坚持下来了。我为这三点而高兴,而不是为任何其他事情感到高兴,比如名利双收等,别人问我,我就说这本来就不是我要的东西。

西诺:现在有没有大陆的大学和研究机构邀请你回去做研究?

张益唐:有,中国科学院、北京大学、清华大学、浙江大学等等。(追问:那你的打算呢)短期内我不会回去,也不会全职回去,这不是因为政治原因。原来我也知道大陆学术界的一些状况,很多人也在批评那些问题。“人在江湖,身不由已”,我现在出了名,好像也在江湖里了。最近一段时间呢,我才知道,我回去啊,有些事情不是说我不想去卷入,怕引起人事纷争,但我要回去了,不想卷也跑不了纷争。我在国内时的硕士生导师也在为我想,他说的不那么直接,但我已经知道这个意思了。现在有北大、清华、中科院数学所,那我回去就有一个问题,演讲的第一站选在哪里?到北大,清华不高兴;到清华,北大不高兴。但从我原来学校来讲,supposed我应该先回趟北大,是母校嘛。有些派系纷争,我这里也不好说,了解不深。在美国,纽约时报、波士顿环球报、NPR已经报道了我,剩下报道的一般是科普杂志,所以在美国我觉得我还是我。但回了中国大陆,我就不是我了,为什么说这个话呢?顺便说一下,前几天丘成桐教授他要拉我回去,他在中国和清华合办了研究所,所以他是清华的。后来因为签证上一点误会什么的,本来时间也很紧,我就没有回去,但是后来我想幸亏没回去。清华来人说给我回去的接待是以最高科学家规格,要走贵宾通道。我说给我买经济舱的机票就好了,他说这一次要商务舱,然后由副校长到机场迎接,住清华最高档的宾馆。给我看他们排的schedule,今天跟校长晚宴,明天下午在某某大概是最高的演讲所做演讲。我看了就想一个问题,我要演讲,你给不给时间让我准备啊,如果整天就是吃喝的话。我还是我,如果我过去说这些东西不是我要的,那现在还不是我想要的。我不需要高官厚禄之类的东西,那对我不重要。我希望能静下心来,我有我自己的时间。但我回国的话,可能一出机场就会被记者围住,我对此有顾虑。

魏碧洲:一个道歉,然后一个问题。先前《世界日报》的报道把你的名字写错了,英文名字上应该是Y开头,结果写成T开头。按照美国学校现在的研究范例,你有这样大的publication,那你在NewHampshire待一阵子后有没有考虑换学校?或者说别的学校会用更好的条件来请你?当然在做数学,不像跟做化学、生物科技一样需要更多的经费、设备、人才,你是单枪匹马的,那你觉得是不是到任何地方都可以。比如普林斯顿请你的话,你会考虑这样的异动吗?

张益唐:我会考虑的。因为这个成果出来的时候已经是5月份了,从财政年度来讲,各个大学已经把下一年的排定了,很可能明年会来很多offer,我会考虑。但是我做这些其实还是自己一个人做,还没有找到很好的partner跟我合作,也许这是我的个性。看什么地方对我做学术有利,我把这个放在第一位。

于大海:很高兴见到益唐,首先是祝贺你的成就。前几年有一个俄国的数学家佩雷尔曼(Grigori Perelman)解出了庞加莱猜想Poincare Conjecture,然后他也不接受任何奖金、荣誉啊,他说数学界不公平。想问你的感觉是怎么样?

张益唐:我不清楚他说的这个数学界不公平是什么意思。我以前看到他为什么不接受解决庞加莱猜想的奖金、荣誉,是说他认为哥伦比亚大学的数学教授汉密尔顿(Richard Hamilton)在这方面也做过很多贡献。汉密尔顿是研究Ricci flow的,与微分方程、几何有关,他研究了近20年,其中丘成桐也起过作用,他见到汉密尔顿后说Ricci flow可以用来证庞加莱猜想,汉密尔顿去做了但最后的关键地方卡住了,一点都做不动了。佩雷尔曼就是一个人在圣彼得堡而不是莫斯科做了好几年,我和他有点像,他一个人最后做出来了,就把结果放在网上提醒他的朋友去注意这个,于是轰动的不得了,他被请到美国来,在波士顿的MIT、纽约大学、Princeton都做了演讲。可是他个性也许是孤僻,有记者对他拍照时用闪光灯,他就说别照别照,有人问他庞加莱猜想有没有实用价值,他听了勃然大怒,怎么会有人问这种愚蠢的问题。后来他受不了了,就回到俄国,拒绝国际数学家大会和克雷数学研究所(Clay Mathematics Institute)给他的奖,他和谁都不联系,也许现在做黎曼假设呢。

王军涛:你觉得数学研究跟年龄有关系吗?

张益唐:Depends.传统说法是,数学研究是年轻人做的,过了一定年龄就不能做了。但是现在的趋势有点不一样了,十几年来最好的几项数学成果,比如费马大定理、庞加莱猜想的解决者都不是很年轻。现在的数学越来越难,如果不是全神贯注投入很多年,很难的。传统的话,你看20世纪最大的数学家,希尔伯特(David Hilbert)、庞加莱(Poincare)他们从未停止过,五六十岁时照样做(数学研究)。这可能也是看人。

陈小平问:看一些资料,你在关注三个问题。你的博士论文是做雅可比猜想,现在孪生素数猜想你取得突破,还剩下黎曼猜想。那你在雅可比猜想以后会取得进展吗?

张益唐:我只能说我做的同黎曼假设有关,我有可能会转到别的问题上去。

******

胡平介绍德比夏尔(John Derbyshire):著名的作家,其著述题材广泛,涉及政治、历史、科学、还有中国,体裁多样,小说、传记,政论都有。关于素数领域,他写过《素数之恋》(Prime Obsession),赢得美国数学学会首届欧拉图书奖,2008年翻成中文,也广受好评。他对中国、对民运也很关心,2001年12月19日王若望先生病逝,2002年1月3日他就在美国著名政论杂志《国家评论》(National Review)上发表文章,向英文读者介绍王若望先生并给予高度评价。现在请他讲话。

德比夏尔:谢谢.对不起,我说中国话说的不太好,都忘了,所以我说英语。

谢谢为我的数学书做广告,我希望能尽快再写一本。不过我有一本小说《来自太阳的火》马上就能在Kindle上面世,这是关于以前的民主运动和活动家们的。但我要提醒你们,这部小说很长很长,因为我把我所有的兴趣都融入其中,包括数学、华尔街、意大利歌剧及中国戏剧,还有西藏等其他我感兴趣的话题,所以这部小说很长但会很好看。小说名来自一个古老的希腊传说,普罗米修斯因为盗火而受到惩罚。

好了,我不能再为自己做广告了。作为一名数学专业的老毕业生,我非常荣幸今天能同张教授坐在一起。虽然在数学领域很难取得重大进展,但张教授取得了卓越的优美的成果。如果你们看他的论文,就知道他向我们表明存在一个小于七千万的数(来解决孪生素数猜想),我们实际认为这个数应该是2,所以如何从七千万压缩到2还有很长的路要走,但比起另外一个类似的难题来说,这段路不算最坏的。在数学的另外一个领域也有一个很难的问题,现在我们已经知道存在一个数字,葛立恒数(Graham’s Number),这个数字如此巨大以至于难以用语言形容,但我们相信实际答案应该是6,所以与之相比在数学界张教授的工作不算最坏。再次恭喜张教授取得非凡成就。我很高兴来到这里,也很高兴同一些老朋友再见面,我们20多年前就相识可后来失去联系。

德比夏尔:Thank you very much.对不起,我说中国话说的不太好,都忘了,所以我说英语。Thank you for advertising my mathematics book. I hope to have another one coming out soon. And I also have a novel which will appeal to the old democracy movement and activists called “Fire from Sun” which you can get on KINDLE. But I warn you it is a very long novel, because I put my all obsessions into it, including mathematics, Wall Street, Opera (both Italian and Chinese), and Tibet, several other of my obsessions all in the novel which makes it very long , but it’s very good. The name is “Fire from Sun”,从太阳来的火。It is from an old Greek story about God, about Prometheus who stole some fire from sun and was punished for it. I don’t want advertise myself.

is an honor for me, an old math major to be sitting here with Professor Zhang .He just does a remarkable thing, wonderful thing, in the field of mathematical where it is difficult to make much progress.

If you understand his paper, you will understand that he has shown that there is a number, which solved this problem, and the number is less than seventy million, actually we all believe that number is 2. So we have some distance to go, from seventy million down to 2. But that is not the worst situation in mathematics. There is another difficult problem in a different area of math, and we know there is a number that solves that problem. But the number is so big you can’t even express it, beyond millions, beyond trillions. It has a special name, Graham’s Number , a very very big number. But we actually believe that the true solution to this problem is 6. So this is not the worst case in mathematics. But it is marvelous achievement. I congratulate Professor Zhang, it is an honor to be here with him and it is very happy to make some old friends who I have known for twenty years or more, although we lost in touch.

It’s pleasure to be here. Thank you.

相关文章

作 者 :张益唐 等
出 处 :北京之春
整 理 :2013年7月8日20:26

素数并不孤独

http://songshuhui.net/archives/82114

数学是科学的女王,数论是数学的女王。

——高斯

 

 

数论,是研究数字的一门数学分支。如同大海,它清澈透明而又深不见底。它的基础概念,自然数、加法、乘法,每个小学生都清楚;但关于自然数的定理,却可以让人穷尽一生而不得其解。而这篇文章要介绍的,只是这个广阔海洋中一个小小的海域。即便如此,我们仍未知道此处海深几何,尽管最近张益唐的突破性工作,使我们比以往更接近真理,但这远远不够。

尽管笔者才疏学浅,有恐贻笑方家。但如能为读者勾勒出一点点数学之美,也不枉费一番心思。

素数何时成双对

可以说,素数是数论中最基础而最重要的概念。如果一个大于二的正整数,除了1和它本身之外,不是任何数的倍数,那么它就是一个素数。比如说,6不是一个素数,除了1和它本身以外,它还是2和3的倍数;而5则是一个素数。

在古希腊,人们已经有了素数的概念,对素数的研究也略有所得。在欧几里德的《原本》中,第七、八、九篇讲述的是“关于整数及其比值的性质”,实际上也就是数论。在这几卷中,欧几里德指出了今天所说的“算术基本定理”:将自然数分解成素数乘积的方法是唯一的。也就是说,如果用乘法的眼光来看自然数,那么素数就是自然数的最小组成单元。它们不能被分解成更小的数的乘积,而所有自然数都可以分解成它们的乘积。

那么,我们自然要问:素数作为自然数的组成单元,它们有多少个?

有无限个,欧几里德不仅回答了这个问题,还给出了一个经典的证明。

不妨反设只有有限个素数,考虑它们的积N,它是一个有限的自然数。所以,N+1也是一个自然数,它也应该是一些素数的积。但根据假设,每一个素数都不整除N+1,这不可能!所以,素数必定有无限个。

这个精巧的证明,是人类探寻素数奥秘的第一步。

2、3、5、7、11、13……最初的几个素数,要找出来并不困难,但随着数字增大,如果一个一个数字按照定义去筛选是否素数,工作量会很快变得十分庞大。同为古希腊数学家的埃拉托色尼,给出了一个比较省力的算法,后人称之为埃拉托色尼筛法。

首先,列出从2开始的数。然后,将2记在素数列表上,再划去所有2的倍数。根据定义,剩下的最小的数——在这里是3——必定是素数。将这个数记在素数列表上,再划去所有它的倍数,这样又会剩下一些数,取其中最小的,如此反复操作。最后剩下的都是素数。

Sieve_of_Eratosthenes_animation

【埃拉托色尼筛法,图片出处:维基百科】

当古希腊人用这种方法计算出长长的素数列表时,他们也许也曾惊异于素数分布的秩序缺失。这些自然数的组成单元,在自然数中的排列却毫无规律,时而靠近,时而疏远。用类似欧几里德证明中的构造,我们知道,两个相邻素数之间的距离可以要多大有多大。而随着数目越来越大,相邻素数之间的距离似乎也越拉越长。

在无限延伸的自然数集中,向无穷的地平线望去,虽然仍有无穷的素数,但它们似乎也愈变孤独。

这种孤独甚至是可以度量的。在十八世纪的尾巴,年仅15岁的高斯独立提出了一个猜想:在n附近素数的密度大约是n的对数。也就是说,相邻素数之间的平均距离大概与它们的对数成正比,虽然增长很慢,但却义无反顾奔向无穷。但即使是高斯,也无法严格地证明他的猜想,要等两个世纪后的阿达玛(J. Hadamard)和德拉瓦莱普森(C. J. de la Vallée-Poussin),才能将这个猜想变成现在的“素数定理”。

虽然如此,偶尔也会有成对出现的素数,它们之间只相差2。像这样成对出现的素数,在那些孤独的同伴看来,无疑是异类。

它们被称为孪生素数。

漫天星河难理清

一个自然的问题是,孪生素数有多少?

孪生素数猜想断言,有无限对这样的孪生素数。但还没有人能严格地证明这一点。在1849年,数学家A. de Polignac甚至猜想,对于任意的偶数2k,都有无数对相邻的素数,它们的差恰好是2k。

这不是一个容易的问题。素数是乘法的产物,而孪生素数的定义则涉及到加法。即使只是加上2,也需要同时用到自然数的加法和乘法的性质。而在数论中的很多看似简单但无比困难的问题,比如哥德巴赫猜想和华林问题,核心也在于加法和乘法的交织。这种相互作用给数论学者们带来了无穷的头痛,以及对咖啡的无尽渴求。

与此同时,行外人的评价却似乎异常中肯:“为什么素数要相加呢?素数是用来相乘而不是相加的”。

当然,如果只将素数用在只与乘法有关的问题上,事情当然简单得多。但如果我们想要更多地了解自然数的玄机,那必然涉及到加法和乘法的相互作用。缩在“容易”的圈子里从来无补于事。如同探险家一般,数学家也有着征服难题的渴望,因为在那困难的山巅上,有着无尽的风光。为了难题产生的新方法、新思想,可能会开辟出意想不到的新天地。

Ulam's Spiral

【画在平面上的素数分布,图片出处:维基百科】

孪生素数的难点在于,它是一个关于素数的具体分布的问题,而我们对素数的具体分布知之甚少。素数定理只告诉我们素数的大体分布,而对于具体一个个素数的位置却无能为力。如同繁星,素数点缀着自然数的夜空,放眼望去,它们朝向无限的地平线愈见稀薄。但要想分清这无限繁星中的每一颗,即使用上最好的望远镜,也无可奈何。

所以,在很长一段时间里,对于孪生素数猜想,人们仍然停留在揣测和估计的层面。

首先尝试直接猜测的,是英国数学家哈代(G. H. Hardy)和李特尔伍德(J. E. Littlewood),他们在1923年开始了一系列的猜测。

G. H. Hardy

【霸气的哈代,图片出处:维基百科】

素数定理告诉我们,对于足够大的自然数N,在N附近随机抽取一个自然数n,它是素数的概率大概就是(ln N)^{-1}。那么,在同样的区间,随机独立选取的两个数都是素数的概率就是之前概率的平方,也就是(ln N)^{-2}

那么,在N附近随机抽取一个自然数n,n和n+2是一对孪生素数的概率是否就是大概(ln N)^{-2}呢?很遗憾,并非如此,因为n和n+2并非完全独立的,所以不能直接应用之前的结果。不过这个估计虽不中亦不远,只要乘上一个修正系数,借此表达两个数相差2的性质,就能得到对孪生素数密度的估计:2C_{2}(ln N)^{-2}。在这里,修正系数C_{2}是一个关于所有质数的无穷乘积。如果密度确实如此,那么显然有无限对孪生素数,孪生素数猜想应该是正确的。

实际上,这是所谓“第一哈代-李特尔伍德猜想”的一个特殊情况,难度甚至远高于孪生素数猜想:它不仅隐含了孪生素数猜想,而且对具体的分布作出了精细的估计。虽然上面的论证看上去很诱人,但它并不是一个严谨的证明,因为它的大前提——素数是随机分布的——本来就不成立。素数的分布有着深刻的规律,远远不是一句“随机分布”所能概括的。

但哈代和李特尔伍德并非等闲之辈,作为当时英国的学科带头人,既然提出这个猜想,当然经过了深思熟虑。现在看来,依据之一是,望向无限,素数的分布的确看似随机:对于那些“简单”的操作(比如说加上2)来说,数值越大,越靠近无限的地平线,看上去也越“随机”。所以,在考虑各种素数形式的分布时,假定素数按照素数定理的密度随机分布,不失为一个估计的好办法。更为重要的是,数值计算的结果也与哈代和李特尔伍德的猜测所差无几。这更增添了我们对这个估计的信心。

然而,猜测只是猜测,不是严谨的证明。无论用数值计算验证到什么高度,有多符合,对于无限而言,都是沧海一粟。李特尔伍德本人就曾证明过一个类似的结论。

人们此前猜测,小于某一个数N的素数个数π(N)必定小于所谓的“对数积分”函数li(N),而根据素数表,这个规律直到10的14次方都成立。但李特尔伍德在1914年证明了一个惊人的结论:对于足够大的N,不仅π(N)可以大于li(N),而且它们的大小关系会无穷次地逆转!但直到今天,对于第一次打破这个规律的N,我们仍然不知道它的具体数值,只知道它大概是个有三百多位的数。

这个例子足以说明素数可以多么深不可测而又出人意料,同时提醒我们,面对无限,不能掉以轻心。无论有多少计算的证据,都不能轻易下定论。征服无限的工具,只有严谨的数学证明。

狂沙淘尽始得金

既然难以知道孪生素数具体有多少,那么不妨换个思路:孪生素数最多能有多少呢?

这就是数学家的思路,如果正面久攻不下,那么就从侧面包围。当难以直接得到某个量时,数学家的“本能”会指引他们,尝试从上方和下方去逼近,证明这个量不可能小于某个下界,或者不可能大于某个上界。如此慢慢缩小包围圈,就有希望到达最终的目标。

而在1919年,挪威数学家布伦(V. Brun)走的就是这么一条路:他证明了,孪生素数的个数不可能超过O(\frac{N(lnlnN)^{2}}{(lnN)^{2}})。籍此,他证明了所有孪生素数倒数的和是有限的。要知道,所有素数倒数的和是无穷大,可见孪生素数在素数中有多么稀少。人们将所有孪生素数的倒数和称为布伦常数,它的具体数值大约是1.90216…。

关于布伦常数,还有个有趣的小插曲。1994年,美国一位教授在计算布伦常数时,无意中发现当时英特尔公司的奔腾处理器在计算浮点除法时,在极稀有的情况下,会产生错误的结果。虽然英特尔声明这种错误对于日常使用来说不足为患,但对于消费者来说,这种托辞实在难以接受。最后,英特尔不得不承诺免费更换有问题的处理器。帮助发现硬件问题,这可算是数论在现实中的一个小小应用。

KL_Intel_Pentium_A80501

【出问题的那款芯片,图片出处:维基百科】

但布伦的证明意义远不止于此。他的这个证明,正是现代筛法的开端。

布伦所用的筛法,根源可以追溯到古希腊的埃拉托色尼筛法。还记得我们怎么用埃拉托色尼筛法列出素数表吗?每次获得一个新的素数,我们都要划去所有新素数的倍数,然后剩下最小的数又是一个新的素数。用类似的方法,我们可以估计在某个区间中,比如说在N和2N之间,大约有多少素数。

首先,我们假设手头上已有足够大的素数表(大概到\sqrt{2N}的所有素数)。用这个素数表,我们打算把从N到2N的所有合数都划去一遍,剩下的就是素数。对于每个素数p,我们将所有p的倍数划去一遍。在N和2N之间,对于每个素数p,大约有N/p个这样的倍数。当然,如果N不是p的倍数,这样的估计会有误差,但在数学家看来,只要能把握误差的大小,最终仍然可以得到正确的结论。

这样,剩下的数的个数就是N减去所有N/p的和,是这样吗?并不尽然,因为有些数可能被划去了几次。比如说1000,它能被2整除,也能被5整除,于是在处理2和5的倍数时,它分别被划去了两遍。对于每一对素数p1,p2,每个p1p2的倍数在之前都被划去了两遍,而我们只希望将它们划去一遍。为了得到正确结果,我们需要对这些数作出补偿:将这些数加回去,一共是N/p1p2个,加上一点点误差。

但这就是尽头吗?如果考虑三个素数的倍数,我们发现补偿得又太多了,需要重新划去;继续考虑四个素数的倍数,划去得又太多了,需要重新补偿……如此一正一反,损有余,补不足,一项一项估计下去,才能从自然数的海洋中,精确筛选出所有我们想要计算的那些素数。

但我们是否需要做到如此精细呢?在整个计算中,虽然每一项看似简单,但简单的代价是误差。虽然每一项的误差很小,但因为数目巨大,累土而成九层之台,累计误差可以比需要估计的量还要多。所以,在现代的筛法中,过于精细反而是一种累赘。况且,我们的目的是获得上界或者下界,所以结果无需完美,只需误差可控。一般而言,由于越到后面的项贡献越小,往往忽略它们的计算,直接将其计入误差。这样可以有效减少需要计算的项的数目,同时也能间接减少误差。当然,如果忽略的项太多,它们引起的误差又会太大,也会导致不够精确的结果。

布伦相对于前人的改进,正在于此。如果盲目计算所有的项,必然深陷误差的泥沼。而布伦则大胆截去那些贡献很小却占绝大多数的项,而对于剩下的项也果断采用更粗放的近似来简化计算。虽然看似不依章法,但通过仔细调校,布伦得以有效控制总误差,从而获得他想要的结果。

布伦的这个思路,开启了解析数论之中一大类方法的大门。我们不知道怎么数素数,是因为它们的分布实在难以捉摸。而现在,布伦的筛法指出了一条用简单的集合来逼近素数集合的道路,这自然令数学家如获至宝。

在更精细的筛选与更微小的误差之中寻找那一线的平衡,这大概是筛法的醍醐。但这样的平衡,显然依赖于我们如何估计每一项的具体数值。可以每项分开估计,但合起来也无伤大雅。无论做法如何,估计的误差越小,筛选可以越深入,结果也越逼近真实。即使估计方法不变,如果有更好的方法决定每一项的取舍,取贡献大而误差小之项,而舍贡献小而误差大之项,当然也能得到更好的结果。

但为何拘泥于每一项?对于每一项,为什么要么取要么不取,不能站在中间立场吗?只要能控制误差,将每一项拆解开来,根据贡献和误差来赋予不同的权值,再求和,这样的结果岂不是更精细?再者,有时不拘泥于素数,放松限制去筛选那些“殆素数”,也就是那些只有少数几个素因子的数,在某些情况下也能得到更好的结果。在严谨的前提下,只要能做出更好的结果,数学家对于突破原有思路毫不犹豫。

这就像一场对素数的围捕战。数学家们拿着筛法这个工具,不断打磨它、改装它,不断练习,正着用,反着用,与别的领域的工具配合着用,绞尽脑汁发明新的用法,殚精竭力用它来围捕那些调皮的素数。欲擒故纵,反客为主,无中生有,李代桃僵,数学家们在对各种各样素数的围捕中,借着筛法,将一套兵法使得淋漓尽致,精彩之处,三国亦为之失色。

在筛法的力量下,孪生素数终于露出了一鳞半爪:

在1920年,同样是布伦,证明了有无穷对9-殆素数,它们之间只相差2。所谓9-殆素数,或者更一般的k-殆素数,就是那些至多有k个素数因子的自然数(包括重数)。而1-殆素数就是素数。模仿哥德巴赫猜想的记号,布伦证明的就是(9 – 9)。

在1947年,匈牙利数学家雷尼(A. Rényi)证明了,存在一个常数k,使得有无穷对自然数m,p,其中p是素数,m是一个k-殆素数,而两者之间只相差2。也就是说,他证明了(k – 1)。

在1950年,挪威数学家塞尔伯格(A. Selberg)证明了,有无穷对整数n和n+2,它们的素因子一共至多有5个。而孪生素数定理相当于素因子至多有2个的情况。

在1966年,意大利数学家E. Bombieri与英国数学家H. Davenport证明了,孪生素数的密度至多是8C2(lnN)−2。也就是说,孪生素数的数量至多是哈代与李特尔伍德所估计的4倍。

陈景润的雕像

【陈景润的雕像,图片出处:维基百科】

在1978年,在证明了哥德巴赫猜想的(1 + 2)后,陈景润用相同的筛法改进了雷尼的结果:他证明了,有无穷对自然数m,p,其中p是素数,m是一个2-殆素数,而两者之间只相差2。也就是说,他证明了(2 – 1)。

而最新的结果则是D. Goldston、J. Pintz和C. Yildirim在2009年发表的。他们证明了,两个素数之间的差距,相比起平均值而言可以非常小。在假定某个强有力的猜想后,他们还证明了,存在无限对素数,它们之间相差不过16,与目标的2只有八倍的差距。但问题在于,即便16这个数目相当诱人,但他们的假定过于强大,强大得不像是对的,也使人们对他们结果的信心打了个折扣。

在整个过程中,数学家们动用了解析数论中的大量工具:L函数、西格尔零点的估计、多种版本的筛法、克鲁斯特曼和的估计、自守形式,如此等等,不一而足。每样工具,都是心血的结晶。但即便如此,我们离孪生素数猜想还很遥远。尽管Goldston、Pintz和Yildirim的结果非常强大,但也不能在无假定的情况下,推出有无穷对素数,它们相差恰好是一个有限的确定值。

虽然只差那么一点点。只要关于所谓“素数分布水平”的引理稍微强一点点,就能得到有无穷对相差不远的素数的结论。但就在这个关口,人们却处处碰壁。希望就在伸手可及之处,却似乎总是差那么一点点。“此路不通”的想法开始弥漫开来。

在众人束手无策之际,当时默默无闻的张益唐向《数学年刊》提交了一份论文。

梅花香自苦寒来

张益唐

【张益唐,图片出处:新罕布什尔大学】

一份三十公分的意大利面包,纵向剖开,抹上金枪鱼泥,放上四片奶酪,放到烤炉烤一分钟,撒上生菜,铺上酸黄瓜和番茄,包起来,切成两半,就是又一个三明治。

这也是张益唐曾经蹉跎的岁月。

在博士毕业后,因为种种原因,虽有真才实学,但张益唐未能在学术界找到一份工作。为了生活,他不得不打工维持生计。即使在他的同学帮助他,找到新罕布什尔大学的一份代课讲师工作后,即使在转正成为一名大受学生好评的讲师后,正式而言他仍不是一名研究人员。

时运不齐,命途多舛;冯唐易老,李广难封。

但数学无需官方认可,研究也不需要正式的职位。张益唐受过正式的数学研究训练,有扎实的功底,有充分的能力,知道怎么去做研究,心里也时刻揣着数学。即使没有正式的职位,他骨子里仍然是一位研究数学的学者。

而他心里装着的,正是素数的分布问题,特别是孪生素数。即使没有正式的研究职位,他仍然做着一名研究者会做的事。他紧跟当前解析数论学界的发展,阅读了J. Friedlander和H. Iwaniec在筛法上的突破性工作,阅读了Goldston,Pintz和Yildirim关于素数间隔的工作,还有很多不同的新工作。他思考着新的方法,尝试沿着前人的路径走下去,相信能用新的技巧,把道路走通,证明有无穷对相差不远的素数。

但这谈何容易!即使从Goldston等人强有力的方法出发,要得到想要的结果,也难倒了众多学者。张益唐花了三年时间,不断尝试新的方法,屡战屡败,屡败屡战。数学研究,莫不如是。

终于,在2012年6月,他到朋友家作客时,灵光一闪,找到了开启关键的钥匙。

要说起来,张益唐的方法并非那种横空出世的新构想,而是利用现有的工具,用新的策略将它们组合起来,再加上一点点新的思想。Goldston等人所用的筛法相对精细,但却稍欠回旋余地,而张益唐稍稍放松了这个筛法,虽然能作出的估计稍欠精细,却换来了更大的游刃之余,得以对筛法中误差与精细的天平作出更精巧的调整,结合一些新的结果,特别是Iwaniec等人的工作,反而能获得更好的估计。箇中精彩之处,恕笔者学识浅薄,难以一一尽述。

用他的新筛法,张益唐证明了,有无穷对素数,它们相差不过七千万。他将他的新方法与新结论,用简洁明了的语言,写成了一篇论文,投稿到数学界的顶级期刊《数学年刊》。

这篇论文名为Bounded gaps between primes(《素数间的有界间隔》)。

收到这篇论文的编辑想必十分意外。在一所不起眼的大学做着讲师的工作,在数学的研究共同体中也不活跃,之前一篇论文还是十多年前发表的,这样的一位默默无闻的数学家,突然声称自己解决了一个困扰众多学者几十年的问题,引起的第一反应自然是怀疑。但毕竟,数学证明就是他学识的证明,他的论文写得如此清楚明白,而所用的方法又是如此合情合理,这冲破了原有的一点点怀疑。编辑认为,张益唐的结论很可能是对的,而他的方法对于解析数论而言,也可能是个重要的进步。

因为很多数学证明都相当艰深晦涩,即使是同一个领域的专家,有时也要花上一大段时间来咀嚼揣摩,才能断定证明是否无误。所以,数学论文的审稿时间通常不短,少则数月,多则数年,期间匿名审稿人通常需要通过编辑与作者多次通信,才能决定一篇论文的命运。而张益唐的论文是如此激动人心,编辑认为他们等不起如此漫长的时间,于是对他的论文进行了“特殊对待”。他们请了筛法方面的大家Iwaniec教授与另一位匿名审稿人(可能是Goldston)来审核这篇论文,很快就有了回音。

两位审稿人都认为这篇文章没有明显的错误。实际上,评审报告中写着这样的评价:“论文的主要结果是第一流的”,“在素数分布领域的一个标志性的定理”。从论文寄出到审稿结束,仅仅花了三个星期的时间。

自此,消息不胫而走。在哈佛大学的丘成桐教授,知悉这个消息之后,很快邀请了张益唐来哈佛做关于他的工作的学术报告。消息很快在数学界与新闻界传开,张益唐几乎是一夜之间,从默默无闻变成举世知名。据说,他的妻子听说有记者要采访时,跟张益唐讲的第一件事,就是把发型整理一下。

作为励志故事,这个结尾再好不过了。

路漫漫其修远兮

当然,故事仍未结束。

在数学界中,对于久攻不下的问题,一旦有人打破一个缺口,其他人很快就会跟进,把缺口弄得更大。张益唐的结果也不例外。

在张益唐的论文中,他给出的结果是,存在无数对相邻素数,它们的差相差不过7000万。但这只是一个估计,并非张益唐的方法能得到的最好结果。在论文出炉后,一些数学家吃透了新方法,开始试着改进这个常数。

张益唐的论文在5月14号面世,两个星期后的5月28号,这个常数下降到了6000万。

仅仅过了两天的5月31号,下降到了4200万。

又过了三天的6月2号,则是1300万。

次日,500万。

6月5号,40万,连原来的百分之一都不到。

在笔者写下这行的今天,剩下的只有区区的25万。

这些结果,可以说是互联网的结晶。这样快的改进速度,对于仅仅依靠一年发行数次的期刊做研究的时代,完全是不可想象的。而在今天,数学家们在网上,你一言我一语,不停发布最新的思考和计算,以最高的速度,汇聚所有人的智慧,才能创造出如此奇观。

张益唐带来的影响不止于此。利用他的新方法,可以解决更多的问题。Pintz指出,从张益唐的工具出发,可以得知存在一个常数C,使得对于每C个连续偶数,都存在无穷对相邻的素数,它们的差是这些偶数之一。也就是说,Polignac的猜想,起码对于1/C的偶数来说是正确的。所以,不仅素数本身难以捉摸,它们之间的差更是剧烈起伏不定。

实际上,大数学家Erdős在1955年就猜测,相邻两对素数差的比值,可以要多大有多大,要多小有多小。而同样借助张益唐的工具,Pintz不仅证明了这个猜想,而且证明了比值之差以不低的速度趋向于两极分化。用他本人的话来说:在刚刚过去的几个月里,一系列十年前会被认为是科幻小说的定理都被证明了。

但孪生素数猜想本身又如何呢?我们知道,如果将张益唐论文中的常数从7000万改进到2,就相当于证明孪生素数猜想。既然现在数学家们将常数改进得如此的快,那么我们是否已经很接近最终的目标呢?

很遗憾,实际上还差很远。

张益唐的方法,本质上还是筛法,而筛法的一大问题,是所谓的“奇偶性问题”。简单来说,如果一个集合中所有数都只有奇数个素因子,那么用传统的筛法无法有效估计这个集合至少有多少元素。而素数组成的集合,恰好属于这种类型。

正因如此,当陈景润做出哥德巴赫猜想的突破性结果(1 + 2)时,他得到的评价是“榨干了筛法的最后一滴油”。因为如果只靠筛法,是无法证明哥德巴赫猜想的。(1 + 2)是筛法所能做到的最好结果。

但数学家们从不固步自封。要想打破“奇偶性问题”的诅咒,可以将合适的新手段引入传统筛法,籍此补上筛法的缺陷。张益唐的出发点——之前提到Goldston,Pintz和Yildirim的结果——正是这种新思路的成果。但对于孪生素数猜想而言,这些进展仍然远远不够。学界认为,虽然不能断定张益唐的方法,即使经过改进,是否仍然不能解决孪生素数猜想,但可能性似乎微乎其微。

但不能低估人类的才智。发明割圆术的刘徽,他对于无知的态度更适合我们:

敢不阙疑,以俟能言者!

参考资料:

Bounded gaps between primes, Yitang Zhang, Annals of Mathematics

Open question: The parity problem in sieve theory, Terence Tao,http://terrytao.wordpress.com/2007/06/05/open-question-the-parity-problem-in-sieve-theory/

Are there infinitely many twin primes?, D. A. Goldston,http://www.math.sjsu.edu/~goldston/twinprimes.pdf

关于相邻素数之差的笔记(张益唐及其他), 木遥,http://imaginary.farmostwood.net/592.html

Polymath上常数改进的页面:http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

张益唐和北大数学78级, 汤涛, 数学文化, http://www.global-sci.org/mc/readabs.php?vol=4&no=2&page=3

哈洛德•贺欧夫各特:彻底证明弱哥德巴赫猜想

http://songshuhui.net/archives/85342

本文修改版已刊作为果壳网系列面向海外科学家的系列采访发表。采访人为远在巴黎高师的数学松鼠方弦,编辑为果壳的吴师傅,现将未删节的完整版本发布在松鼠会。

先来一段背景知识:

“任一大于 2 的整数都可以写成三个质数之和。”271 年前,德国人哥德巴赫告诉欧拉这句话时,可能自己也没想到一下就在解析数论这个领域挖了一个东非大裂谷级别的“坑”。

那时 1 还是素数。如今数学界已不用这个约定,原话用现在的语言来表示是,“任一大于 5 的整数都可写成三个质数之和。”

欧拉后来回信哥德巴赫,说这句话可以更简洁——“任一大于 2 的偶数都可写成两个质数之和”。后人将这句话记为“1 + 1”。这个表述如此简单,以至于很多业余爱好者也想在这个问题上一展身手。但它实际上却是那么难,出现之后的 160 年里,没有任何进展。1900 年希尔伯特在第二届国际数学大会提到它后,又重新燃起数学家们挑战和解决它的热情。

然而,至今也没有人证明哥德巴赫猜想。

不过,数学家们已经从 271 年前的出发点走的很远了。从上面关于偶数的哥德巴赫猜想,又可以推出:

任一大于 5 的奇数都可写成三个素数之和。

这被称为“弱哥德巴赫猜想”。1923 年,英国数学家哈代与李特尔伍德证明,假设广义黎曼猜想成立,弱哥德巴赫猜想对充分大的奇数是正确的。

1937 年,苏联数学家伊万•维诺格拉多夫更进一步,在无需广义黎曼猜想的情形下,直接证明了充分大的奇数可以表示为三个素数之和,被称为“三素数定理”。不过他无法给出“充分大”的界限。他的学生博罗兹金于 1939 年确定了一个“充分大”的下限:314348907。这个数字有 6846169 位,要验证比该数小的所有数完全不可行。

1995 年,法国数学家奥利维耶•拉马雷证明,不小于 4 的偶数都可以表示为最多六个素数之和。莱塞克•卡涅茨基证明了在黎曼猜想成立的前提下,奇数都可表示为最多五个素数之和。2012年,陶哲轩在无需黎曼猜想的情形下证明了这一结论。

2013年5月13日,法国国家科学研究院和巴黎高等师范学院的数论领域的研究员哈洛德•贺欧夫各特,在线发表两篇论文宣布彻底证明了弱哥德巴赫猜想。贺欧夫各特在文章“Minor arcs for Goldbach’s problem”中,给出了指数和形式的一个新界。在文章“Major arcs for Goldbach’s theorem”中,贺欧夫各特综合使用了哈迪-利特伍德-维诺格拉多夫圆法、筛法和指数和等传统方法,把下界降低到了1030左右,贺欧夫各特的同事 David Platt 用计算机验证在此之下的所有奇数都符合猜想,从而完成了弱哥德巴赫猜想的全部证明。

哈洛德•贺欧夫各特(1977年 -),秘鲁数学家。2013年5月13日,贺欧夫各特在网络上发表两篇论文,宣布彻底证明了弱哥德巴赫猜想。以下问答便是在哈洛德和小方之间展开的。

证明弱哥德巴赫猜想

问:您能向读者介绍一下您自己吗?包括您的工作和经历。

答:我是个搞数学的,在秘鲁出生,高中毕业之后获得了美国大学的一份奖学金,然后在普林斯顿大学攻读博士,在2003年获得了博士学位。之后我到过几个地方工作,比如说加拿大,现在就在巴黎搞研究。

问:解析数论是你的主要研究领域,是这样吗?

答:对的,不过我也搞一点群论,比如说关于置换群的Cayley图的研究。

问:您最近宣布您证明了弱哥德巴赫猜想,您能简单介绍一下这个猜想以及您的证明吗?

答:对的,希望我的证明没有搞错吧。(笑)

这个弱哥德巴赫猜想,它来源于18世纪初欧拉和哥德巴赫的通讯。我们知道欧拉是历史上最伟大的数学家之一,他当时在俄国搞数学。当时的俄国正处于现代化的进程,科学方面一穷二白,但他们仍然希望发展科学。而哥德巴赫则是一位德国青年,在莫斯科的外交部们工作。他不是专门搞数学的,但是个很不错的数学爱好者,而欧拉也很高兴能有位说德语的笔友可以聊聊数学。他们互相写过不少信,而哥德巴赫猜想就是由哥德巴赫提出,由欧拉阐述的。

有两个哥德巴赫猜想:弱哥德巴赫猜想和强哥德巴赫猜想。弱哥德巴赫猜想说的是,每个大于5的奇数都可以表达为三个素数的和;而强哥德巴赫猜想说的是,每个大于2的偶数都可以表达为两个素数的和。大家都觉得这两个猜想是对的,但是还没人能证明这一点。

从名字也可以看出来,如果强哥德巴赫猜想成立,那么弱哥德巴赫猜想也成立。如果每一个大于2的偶数都可以写成两个素数的和,那么对于任意的一个大于5的奇数,减去3之后就是一个偶数,可以写成两个素数的和,而原来的奇数就是这两个素数的和加上3。因为3也是一个素数,所以这个奇数就是三个素数的和。而我做的工作就是证明这个弱哥德巴赫猜想。

在19世纪,人们又开始对这类问题感兴趣。某位不知道哥德巴赫的数学家重新提出了这个猜想。对于这类问题,当时数学家只能做点手工验算。对于强哥德巴赫猜想,他们验算到了大约两百万。用这个结果,他们将弱哥德巴赫猜想验算到了十亿。他们是怎么做的呢?他们写出从3到大概十亿的一串素数,相邻两个素数之间相差不到两百万。用这条”素数天梯”就能验算弱哥德巴赫猜想。对于任意十亿以下的奇数,我们只要找出素数天梯中恰好比它小的那个素数,它们的差一定是个不超过两百万的偶数,所以能写成两个素数的和。也就是说,这个奇数能写成三个素数的和。虽然这个方法不错,但如果只靠手算的话,也推进不了多远。

然后到了20世纪,问题才有了真正的进展。在大约1920年,英国数学家哈代和李特尔伍德证明了,在假定广义黎曼猜想成立的前提下,存在一个常数C,使得所有大于C的奇数都能表达为三个素数的和。他们没有具体给出C的数值。

所谓广义黎曼猜想,它关注的是一类被称为L函数的复变函数。它宣称所有这些L函数的所谓非平凡零点的实部都是1/2。虽然我们有很多很好的理由去相信这个猜想成立,但我们还没办法证明它,所以这类依赖于它的结果都是条件性的。

十几年后,俄国的维诺格拉多夫改进了这个结果。他去掉了之前结果中对广义黎曼猜想的假定,直接证明了存在一个常数C,使得所有大于C的奇数都能表达为三个素数的和。

无论是哈代-李特尔伍德还是维诺格拉多夫,在证明中都没有给出常数C的具体值,不过我们可以从证明中看出来,维诺格拉多夫的常数比哈代他们的要糟糕得多。二十多年之后,维诺格拉多夫的一位学生Borozdin才给出常数C的一个具体值。这并非易事,在数论的某些问题中,你可以证明存在某个常数C,但基本上没有希望确定它到底是多少。我们不太清楚维诺格拉多夫原来的证明有没有提示这个常数的具体值,因为证明很复杂,涉及所谓的”西格尔零点”。但很有可能维诺格拉多夫已经知道他本人的证明在原则上可以给出常数C的具体值。

虽然Borozdin给出了常数C的具体值,但这个值非常大,实际上是3的3的15次方。这个数非常非常大,就连它的位数本身都非常非常大。你可能会说,那就像当年十九世纪那样,验算到这个数,就能完全证明弱哥德巴赫猜想了。问题是,这个任务基本上没可能完成,永远不可能,因为数字太大了。

后来人们就尝试改进这个常数。陈景润和王天泽就将常数改进到了大概10的30000次方,或者是20000,我记不太清了。陈景润就是那位证明了充分大偶数可以表示为一个素数和一个至多只有两个素因子的所谓”殆素数”的和的数学家,我想你们的读者也对他相当熟悉。他们改进的常数比维诺格拉多夫的要好得多,但还是远远不够。后来又有一位中国的数学家,将常数改进到了10的大约1300次方,也就是1跟着一千三百个零那么大的一个数。这挺好的,但也还是远远不够。

其实,即使能将常数减小到10的100次方,也还是不够。为什么?因为这个数比宇宙中所有的粒子数再乘以自大爆炸以来的秒数还要大,所以你即使拥有整个宇宙以及其中的所有原子,用来建造一台大的计算机,也很难在足够短的时间内将猜想验证到10的100次方。所以,我们要做的就是将常数尽量降低,降低到大约10的30次方,到达计算机能处理的范围。其实计算机能处理的要比这个多一点,但是大概不会多太多。

于是,在2005到2006年,我开始对这个问题感兴趣。在此之前,我看过维诺格拉多夫的证明,那是在我的研究生课程上看到的内容之一。陈景润等人的工作的方向又与此完全不同。那时我就意识到要将常数降得很低,我当时能将它降到10的100次方,但是这还不够,对猜想的完全证明没有决定性的作用。

所以,从2006年左右开始,我就一点点地去做这个问题,发掘不同的小想法。也有别人在干类似的事情。大概十几年前,法国的一位数学家Ramaré就证明了,每个偶数都可以写成最多六个素数的和。然后大概一年半前,陶哲轩证明了每个奇数都可以写成最多五个素数的和。从这个节奏看来,我要赶紧点,当时可能我也有些毛了(笑)。所以从去年开始,我就放下了手头上别的工作,开始加班加点把所有的小想法拼在一起。最后我发现它们能行得通,而这无疑是极好的。

我把常数降低到了10的29次方,你在网上的预印本上看到的就是这个数字。实际上我们可以将它降低到10的27次方,但这个没什么意义,因为我们的程序已经能验证到大概8×10^30,比实际需要的还要高80倍,再搞下去也没有必要。

这篇论文已经投稿到期刊了,现在就是等待审稿的结果,大概要花上一年时间吧。

谈谈张益唐

问:这几个月对于解析数论来说挺忙碌的,我们有您对弱哥德巴赫猜想的证明,还有张益唐对素数间距方面的突破。您对此有何评价?

答:我还没有仔细看张益唐的证明,不过我觉得他的证明令人印象深刻。大家说我和张益唐的证明是同一天发出来的,但实际上我发表我的证明的前一天就听说了张益唐的证明。但这只是个巧合,我并没有刻意去赶上时间,而我和他的工作其实关系也不太大。当时,我写好了论文之后,就跟我父母谈过,看看是明天或者下个星期在arXiv上贴出我的证明。然后我在Facebook上就看到了他在哈佛做讲座的消息,宣布了他证明了对于某个有限间距,存在无穷对小于这个间距的素数对。

一开始大家都不太相信,事实上我的Facebook好友们似乎也持怀疑态度。但很显然他并没有将他的工作发在网上,因为他之前没有发表多少论文,他可能怕大家不相信他的证明,不会去认真对待他的工作。于是他直接将论文投稿到了一个期刊,然后请这个期刊尽快审阅他的稿件,然后过了一个月,审阅就完成了,对于一个数学期刊来说这是相当的高速度,也是相当的罕见。对于一般的论文,比如说我的,就大概要花一年的样子。

反正是过了一个月,张益唐的论文被几位数论方面的专家匿名审阅过,没有挑出很大的问题,于是他才将论文放到网上。大家读了论文之后,都意识到他的确解决了素数有限间距的问题。他的证明是对的。这整个过程很震动人心。

在他的证明以及我的证明中,我觉得很重要的一部分就是对方法的改进。在张益唐的证明中,他改进了邦别里-维诺格拉多夫定理的一种特殊情况。其实之前也有人对这个定理做过各种各样的改进,但这些改进都不太适合素数有限间距的问题。而张益唐做的就是找到了适合的那种推广。我觉得他的推广也许可以用到别的数论问题上。

张益唐的证明里给出了一个常数。对张益唐本人来说,常数本身是多少并不重要,重要的是这是个有限的常数,而现在人们在尝试降低这个常数。我个人希望相关的论证能够弄得简洁一些,因为如果论证太复杂的话,这种努力就不太吸引人了。

问:张益唐没有正式的研究职位却取得了重要的成果,在数学界中这很普遍吗?

答:其实这不太普遍。一般说的”纯粹的研究职位”也不是只搞研究,也有一些行政方面的工作,也带一些学生,不过还是研究居多。而更普遍的是研究和教学兼有的职位,在法国这很普遍,我相信在中国和其它国家这也是主流。

张益唐特别的地方在于,他是大学里的讲师,这不是一个永久职位,而大家也不会期望一位讲师去做研究。所以一位大学讲师证明了这么一个重要的定理,这很不寻常,一般的讲师大概连论文都不太发。讲师的授课压力还是比较大的,所以可以搞研究的时间可能就少一些,当然这跟大学本身的政策也有关系。

当然,即使张益唐没有正式的研究职位,但他是受过专业的数学训练的,所以才能解决素数间距的问题。

问:您知道,张益唐和陈景润在不太好的境遇中做出了非常好的成果。有些人觉得他们也能想这两位数学家那样解决世界难题,即使他们没接受过数学训练。您对这些人是怎么看的?

答:我知道,总有一些人,他们没有数学背景,不知道何谓数学证明,却整天幻想解决重大的数学猜想。这是一件悲哀的事情,但总有这样的人。我偶尔也会收到这些人给我发的邮件。我真的觉得这是件很悲哀的事,他们应该找点别的事情去做。

要想做数学,需要多年的训练,还要与别的数学家交流。当然,对于做数学的人来说,总会碰到艰难的时期。这时,陈景润和张益唐的遭遇就会提示我们,只要有坚实的数学训练,再加上坚强的意志和艰苦的工作,常常可以度过困境。但正式的数学训练是必须的。

举个例子,印度的天才,拉马努金,他没有接受完整的大学教育,因为他在大学里只想上数学课所以被开除。但他的确接受了坚实的数学训练,虽然质量可能没那么好。他也去图书馆看书,做了很多数学工作,也跟同学讨论,也有老师支持他去学数学。所以,数学训练是必须的,任何想做数学的人都不能绕过这一步。

问:您平时是怎么工作的呢?

答:你看,我会看书(指着桌面上的一大堆书)。在法国这里,我将绝大部分工作时间花在了搞数学研究上,不过我也会跟数学家朋友们聊聊天,也会去带博士,也会去教课。我觉得对于数学家来说教课是很重要的。我挺喜欢教课,偶尔去一下那种,有很多人教课比我好得多。我喜欢去讲一些大家都比较熟悉的东西,但是用一些新的理解和思路去讲。我不太喜欢那种每个学年的例行讲课。

我在法国的这个职位有一点好处,就是比较自由。除了研究以外,我可以去教课,可以到全球各地与别人合作。我觉得这是一件好事,我相信数学的未来在于全球合作。在欧美的数学家也应该多去欧美以外的地方,像是南美和亚洲,去传播数学。

问:您曾经到印度和秘鲁授课,这就是您的动机吗?

答:正是如此。我觉得这是个很好的经验,那里有不少有才能的学生。我很快就要在秘鲁主持一期暑期学校了。对我来说,这是个很重要的事业。我在秘鲁授课的一个原因当然是我出生在秘鲁,但我觉得每个人都应该走出去传播数学,在世界的每个角落。每个人都可以由此得益,不失为很好的体验。

问:既然您在法国、美国工作过,又曾经到印度、秘鲁授课,能给我们讲讲这些国家之中数学研究与教学的差异?

答:比如说秘鲁,如同其它南美国家,数学研究在大概二十世纪起步,但由于国家本身经历的种种磨难,现在在秘鲁做数学并非易事。图书馆不够好,在城市生活也不轻松,薪水也不够高,能做研究的大学也很少。对于秘鲁的学生,他们通常会互帮互助,也有些机构会帮助这些学生,但能让他们接受到足够训练,成为研究人员的体制却仍不完全。秘鲁的学生可以到别的国家求学,比如说美国或者法国,然后成为研究人员。但秘鲁本身的体制也正在不断完善之中。

再看美国,对于研究人员来说最大的不同就是有了更多的自由,可以与更多的人合作。在法国有更多与拉丁美洲的合作项目,可能是因为语言更为相近的缘故。

问:对于希望学数学的中国学生,您有什么建议?

答:啊,这是个好问题。我就从数论方面讲。如果希望学数论的话,需要掌握很多领域的知识,而不仅仅是数论。全面的数学教育是很重要的。另外,数学不仅仅是理论的构建,还包括对实际数学问题的解决,应该注意到这一点。

我最喜欢的一本数学书是维诺格拉多夫的一本小书,书名是《数论基础》(Elements of number theory)。我是在13岁生日时收到这份礼物的。这本书不难,而且有很多很好的习题。当然,我现在的证明改进了维诺格拉多夫的结果,这纯属巧合。我小时候,秘鲁的书不便宜,但有个出版社专门出版一些不太贵的西班牙语数学书,这些数学书都不错,至少我买得起,从中也获益良多。

我认为兴趣对于做数学是很重要的。数学研究不仅仅是一种职业(job),更是一种使命(vocation)。当然会有困难的时候,但最重要的,还是将它视为自己的使命。毕竟人生苦短,虽然在工作外还有生活,但工作还是占据了很大一部分的时间,这些时间还是花在自己感兴趣的事情上为好。我们应该做有用的事,但同时最好也做最适合自己的东西。

问:有很多不做数学的人,觉得数学很困难而且很无聊,您怎么看?

答:我觉得这是因为他们没有接受到好的数学教育。

现在有一种很不好的现象。一个人可以堂而皇之说自己不懂数学,没人会指责他;但对文学的态度却截然不同,自称没读过莎士比亚或者论语的人往往会遭人白眼。

不过也有例外。有一次我和一位朋友在法国南部开会,因为错过了公交车,于是在路边干等着。有位好心的司机看见我们,载了我们一程。在车上闲聊时,他告诉我们他很喜欢数学,认为数学和戏剧同等有趣。当然这种人很少,不过还是有的。

当然,数学、戏剧,还有别的很多东西都很有趣,但会将它们相提并论的人并不多,而这些人之前大多从事过技术性工作。在一般的群体中,更常见的态度是自称会读小说而完全不懂数学,而且不以为耻反以为荣。我觉得这大错特错,人们不应该将自己的无知作为骄傲的资本。

问:对于数学科普,您怎么看?

答:我认为数学普及很好,数学研究可以由此传达大众,但我们也应该指导对数学感兴趣的年轻人去接受更严肃的数学教育,以成为数学家或者科学家。数学研究者一般在很年轻的时候就开始做数学,比如说高中毕业之后或者在大学里。我认为面向大众的数学普及是很好的,但面向这些年轻人的,比较高层次的数学普及也是很重要的。

当然,这两个层次之间还有一层,就是面对科学家和工程师的。数学是他们重要的工具,但不是他们研究的领域。他们明白更多的概念,所以说明可以更深入。

问:您认为职业数学家在数学科普中可以起到什么样的作用?

答:在我刚才说到的三种数学普及中,职业数学家更适合做中高层次的数学普及。已经有不少人在做面向大众的普及,而且都做得不错。但中高层次做的人很少。我自己也在做一些这方面的东西,比如之前说的去世界各地讲课。我还有个数学博客,但几乎没什么内容,因为我最近忙着做论文。不过,过些时间我会写一篇有关弱哥德巴赫猜想的博文,大概工程师的水平就能看懂,敬请期待。

if

【摄影:方弦】

以下进入专业一些的内容,不过,也推荐大家一读。用哈洛德的话说是“虽然有点难,但是我觉得还是挺有趣的。”

问:您的证明是基于圆法的改进,您的方法能用到别的解析数论问题上吗?

答:为了降低常数,我对现有的技巧进行了很多改良。虽然很多改良都是针对弱哥德巴赫猜想这个特殊问题的,但也有一些可以应用到更广泛的解析数论的问题上。其实我认为有几个技巧甚至可以在解析数论以外的纯数学领域,甚至应用数学中找到应用。

在证明当中,我需要找到某种“平滑化”的手段,这涉及到某些积分。你要算一个无限求和的上下界,你不想搞突然截断,舍弃某一项之后的所有东西,你更希望这些项会慢慢变小,“软着陆”,这种技巧叫平滑化。

关于这一点,有个很有趣的故事。在哈代他们的证明里用到了无限求和的平滑化,但维诺格拉多夫的证明就搞的突然截断,而自此之后的大部分相关工作都没有用过平滑化,不过Ramaré和陶哲轩的工作就重新用了平滑化。

在解析数论中这种技术上的“倒退”,就好像当年罗马帝国崩溃之后,人们就忘记怎么造水泥了。就像这样,上一代的数学家好像忘却了平滑化,五十年代人们还在用,六十年代就没人用了。当然,这也要看情况。不过一般来说,还是平滑化的好。

但问题是,用哪种平滑化呢?Ramaré和陶哲轩用到了指数衰减的平滑化。虽然指数衰减用起来很便利,但是还不够平滑和缓。他们的平滑化其实还不错,但我觉得还不够好,所以我就开始自己开发新的技术。我用高斯函数代替了指数衰减,因为高斯函数更加光滑,下降得也更加快。

下面我讲一下技术细节,虽然有点难,但是我觉得还是挺有趣的。

指数衰减其实真的很好搞,因为实际上它与各种变换有很大的关系,比如说傅立叶变换和梅林变换,而我们对这些变换研究得很深入。但对于高斯函数,人们知道其中一些结论,也知道它跟三角函数有些联系。你可能觉得大家已经对这个高斯函数比较熟悉,但事实不是这样,在解析数论里,很少有人用到高斯函数的平滑化,所以有关的常数之类的东西还没人算出来过。反而在应用数学里,因为经常用到高斯函数,反而搞应用数学的人知道得更多。

在解析数论中,我们常常用到所谓的梅林变换,我觉得用到梅林变换的人之中有一半都是搞解析数论的。但梅林变换其实就是拉普拉斯变换的另一种写法。如果我们考虑高斯函数与三角函数乘积的梅林变换,我们会得到所谓的“抛物圆柱函数”。其实一年前我还不知道这个函数叫啥,但貌似物理学家和工程师是这么叫的。他们用这个函数用得不少,但对它的了解却不太透彻。我们知道一些渐近估计,但没有明确的常数,也没有明确的误差项。

所以我必须自己来搞清楚这些东西,我花了一个半月的时间。因为我平时不搞这个领域,当然比专精的人要慢些。我把这方面的结果都写进论文里了,我觉得这些结果对于工程师和物理学家来说可能会有用,他们可能还会推进这些结果。结果还得走着瞧,不过我觉得这是个很好的例子,说明数论工作也可能有实际应用,因为在数论研究中,我们需要改进各种工具,而这些工具不一定是数论专用的,可能在别的数学领域中也会用到。

问:您与合作者在证明中用到了计算机,具体是怎么用的呢?

答:我和我的合作者David Platt写了篇小文章,讲的就是用“素数天梯”的方法来验证弱哥德巴赫猜想到大概10的30次方。这个计算并不是很难,我们在地下室机房利用空闲时间算了几个星期。其实随便哪位爱好者有心的话,自己在家算几个月也能大概验证到10的29次方。这段计算其实小菜一碟。因为我希望留点余地,以免论文中有什么计算出错,所以验证到了比较高的10的30次方。

真正复杂的计算在另一篇Platt自己写的论文里,我对此的贡献就是说服他去做这个计算。其实在法国有很多公共资源,只要你能找到合适的人,跟他吃个午饭,这个计算就是这样子来的。在这个论文里,Platt延续了他博士论文中的工作。

还记得广义黎曼猜想吗?广义黎曼猜想涉及一类叫L函数的复变函数,它们在复平面上有无穷个非平凡零点。要对这些无穷的东西搞验证似乎是不可能的。但你可以考虑一个有限的问题,比如说先取十亿个L函数,然后对于每个函数,验证虚部绝对值小于十万的所有非平凡零点的实部都是1/2。这是一个可以完成的验证。类似的计算在十九世纪就有人做过,实际上黎曼在提出他的猜想时,就对黎曼ζ函数这个特殊的L函数验证过小于100左右的所有非平凡零点。所以,从原则上,我们考虑的有限的验证可以用手算解决,不过一般还是靠计算机。

Platt做的就是用计算机完成这样的计算,而且是以严格的方式。对于数学验证而言,严谨性很重要。我们知道,计算机只能表达有理数,它不能直接处理像圆周率这样的无理数。所以,实际上计算机不能处理实数,它只能处理一个区间[a,b],其中a和b都是有理数。而你只能问你的计算机,能不能给出一个尽量短的区间[c,d],使得区间[a,b]中的实数的正弦值(或者别的什么函数值)都落在区间[c,d]中。这就是所谓的区间算术。

有很多库可以处理区间算术,Platt他自己写了一个特别快的,不过网上也有不少类似的库。我们需要用这些库,即使这意味着计算速度比直接用浮点数要慢上几倍,但计算的过程和结果是完全严谨的。

问:您在证明中用到了计算机,那您对计算机在未来的数学证明中发挥的作用有什么看法呢?

答:这个问题挺有争议性的。在我们的证明里,计算机做的就是验证一些有限的陈述,其实跟十九世纪那种手工验证也没什么区别,而且计算机出错的可能性比人要小多了。你知道,把一串数字加起来可是计算机的强项。基本上在计算机验证里发现的错误,罪魁祸首都是敲键盘的那个人。

但计算机还能做别的东西。现在,计算机能够独自证明一些简单的小引理。最近有一篇论文,其中一个引理的证明就是计算机给出的。那是一个很小的不等式,就像那些在高中数学竞赛中出现的不等式。但这类不等式并不容易证明,所以它们才能出现在高中数学竞赛中。但现在,有时候你可以将这种不等式直接输入计算机,然后计算机有可能直接给你一个证明,或者告诉你这个是对的。这种计算机证明被接受了。

这是一种新事物,因为计算机能处理这种问题也就是最近的事。对付这种东西的算法还很原始,在实际操作过程中,为了能算出结果而又不死机,需要微调一大堆变量,在写代码时也要多花心思。这类小引理的证明算是种偶尔会出现的新奇事物。这也是个很有希望的方向,需要发展一下这方面的算法。

不过要分清计算机证明与数值实验。数值实验就是比如说我把某个东西验证到了一百万,然后我说它大概是对的,但这不是一个证明,而只是一种经验式的证据,告诉我们大概什么方向是对的。而计算机证明,我们用到的就是对有限陈述的验证,原则上用笔和纸也能完成的那种。这种有限的验证是不可避免的,因为在数学分析中,如果变量小于某个数值,主项和误差项相差不够远,这种情况就要一一验证。要分清证明和证据,证据只能指引方向,而证明就真的是无误的逻辑证明。

问:您的证明里用到了圆法,而张益唐的证明用到了筛法。您能介绍一下这两种方法的异同吗?

答:筛法和圆法其实是很不同的,不过也有相似的地方。有一种叫“大筛法”的,就跟圆法有关。但这与张益唐主要用的“小筛法”很不同,当然他也稍微用到了一些大筛法。圆法的本质就是应用在数论中的傅立叶分析,简单来说就是对圆周上的函数进行分析。而筛法的目的则是给出素数分布的一种近似估计。

在我的论文中就用到了大筛法和圆法的关系。在大筛法中的一些技巧可以直接用到圆法中,反之亦然。两者其实是同一枚硬币的正反两面。张益唐的证明也用到了大筛法,因为他需要类似邦别里-维诺格拉多夫定理的结果,而那个定理是用大筛法的。其实大约在八年前,大家就知道只要把邦别里-维诺格拉多夫定理的某个特殊情况推广一下,就可以得到张益唐的结论,而张益唐做的就是这一点。八年来很多聪明人都铩羽而归,大家都觉得这是个很难的问题,但张益唐成功了。我还没细读他的论文,但我感觉他虽然在这个意义上用到了大筛法,但他的改进并不在大筛法上,而是有关其它技巧的改进。

但他和我的证明也有相似之处。我们的论证都是基于维诺格拉多夫建立的所谓I类和II类和。在我的和他的论文里都用到了这些概念。

问:在解析数论中,除了筛法和圆法,还有别的主流方法吗?

答:比如说广义黎曼猜想,我们可以证明一些有限的特殊情况,然后利用这些特殊情况去证明别的东西。这大概有两种做法。

一是直接去证明一些更弱的结论,其中一个例子就是所谓的“无零点区域”。我们还不知道怎么证明所有非平凡零点的实部都是1/2,但我们可以证明零点必定在某个包含所谓“临界线”(实际上就是实部为1/2的复数组成的直线)的区域内,而这个区域在实轴附近很小。这种限制能告诉我们一些重要的信息,而人们一直在使用类似的结论来证明别的问题。

二是直接去验证零点。我们可以说,对于虚部大于一定数值的零点,我们一无所知;但对于虚部不太大的零点,我们可以直接用计算机去验证。这样的好处是,对于这些虚部不太大的零点,我们能完全确定它们的位置,而并非只知道它们在某个区域内。但我们只能对有限个L函数验证这些结论,而“无零点区域”类的结论可以应用到所有L函数上。不过,这种有限的验证也更容易做到。

其实还有很多很多的小技巧,不过它们还没有到达“方法”这一层面。

丘成桐香港中文大学演讲:如何成就科学大师

演讲人:丘成桐

时间:2013年6月10日

地点:香港中文大学

今日很高兴和诸位谈谈我个人成长、处世和决策的经验。这些经验不一定局限在数学的研究,我希望它对年轻的学生会有帮助。

介 绍

我首先描述一下我的家庭背景,这对于我的成长影响很大。我出生在一个受过良好教育但贫寒的家庭。我的父亲曾担任几所大学的教授,包括香港中文大学崇基学院。我的父亲做了很多哲学和中国历史的研究。不过,他大学时的专业是经济学,并在崇基学院讲授经济学课程。他也曾经在朋友的赞助下尝试创办银行,但以失败告终。在我14岁时父亲英年早逝。我们全家顿时陷入极大的困境。这段经历使我认识到资源对于家庭、社会乃至国家的重要性。

我们家一共有8个兄弟姊妹。父亲去世后,照顾家庭的重担落在我的母亲和姊姊身上。父亲的去世和家庭遇到的困难对年幼的我是很大的震撼。这时候,母亲和姊姊作出了对我一生至关重要的决定——让家中年幼的孩子在学校继续读书和完成学业。

但是,这也意味着母亲和姊姊要付出巨大的代价。我的舅舅曾受过我的父母的抚养和帮助,他的家境还算小康。他提出要帮助我们家从事养鸭子谋生。但他的条件是:所有的孩子必须放弃学业。母亲对我们的未来有更高的要求,拒绝了她弟弟的建议。在这非常困难的环境下,她的信念和忍耐起了决定性的作用。虽然我得到政府奖学金的资助,我在闲暇时还须靠辅导学童挣钱。生活虽然很艰难,但我却学会如何去应付这些困境,并从中取乐。我知道我必须在学业上出人头地,但对我来说这是一条不归路。我必须有所作为:为我自己和我的家人走出一条康庄大路。不成功的话,就没有前途了。

严峻的现实促使我成熟和坚强。我认识到我需要依靠自己的力量。在父亲去世前,我从未有过这种经验。父亲是家庭的领导者,他健在时我们丝毫不担心自己的未来。但现实毕竟是残酷的,再不靠自己就没有希望了。

苦难与成熟

我之所以提到这些经验,是为了说明经历过不幸之后,人们往往会变得更加成熟。在人类历史上,有许多本该拥有辉煌前程的人却最终被困苦的生活压垮,但是也有很多著名的伟人在克服困难之后取得成功的故事。

让我举一个我熟悉的例子。就是伟大的中国数学名家周炜良(1911年—1995年)。周炜良20世纪30年代在德国学习。学成归来后,开始是在中央大学任教,继而管理他的家族企业。第二次世界大战摧毁了他的财富,他决定重新回来做数学研究。他搬到普林斯顿居住,并向一位著名数学家所罗门·莱夫谢茨学习。在这段时间里,他做出了开创性的工作,代数几何学中有许多成果以他的名字命名,他大部分著作将会永载史册。

历经苦难最终导致伟大发现的过程,非常类似于打磨钻石。苦难让人成熟和进步。它教会人们如何快速作出正确的决定。在很多情况下,人们没有时间改变自己的决定,甚至没有时间犹豫或者后悔,所以做决定时往往得依靠我们的经验。翻开史册,我们发现企业或者国家的领导人如果有过艰辛的磨砺,往往能够比一般在优厚环境中长大的领导者更胜一筹。

在教育方面,我觉得让学生学会独立思考以及应对艰难情况的能力是极为重要的事情。学生应该主动学习丰富的知识,而教师应该尽量为他们创造良好的学习和咨询的环境。因此我组织每周约9小时的学生讨论班。我要求我的学生阅读一些可能与他们的论文课题并不直接相关的文章,包括一些超过他们当前学识的高深课题。

报告各自领域之外的困难文章让学生们备受挑战。但读懂了这些文章之后,他们会有质的飞跃。对某些课题甚至会比我有更好的理解。有些学生则试图欺骗和隐藏他们的无知,这些学生通常无法真正掌握推动学科进步思想的精髓。我相信我们如果不理解前人如何开创学问的蓝图,我们将会难以提出自己的创见。我相信这种经验并不局限于做学问:在社会上做事或者经营企业,假如没有亲身经历过挑战,就会缺乏经验,而难以施展才华。

困难的环境可以令人变得更加成熟。但是反过来说,长久的为生计奔波,对学者的成功却可能是有害的。毕竟,学者需要在一个稳定的环境下成长和发展,才能完成有深度的成果。我观察到历史上的伟大数学家之中,顶多百分之五的人在其整个职业生涯中都身处穷困。在历史上,我们看到一个社会,一个国家,在百战之余,都需要休养生息,才能成长。

建立目标

要成为一个大学者,我们必须建立一个宏大而有意义的长远目标。这个目标的一个非常重要的特征是要确保在我们追求它的道路上,即使遇到挑战,我们也还会感到愉悦。我本人的目标就是在数学研究上有深入的贡献。我并不是一个天生的数学家,但是父亲的教导让我很敬佩那些对人类作出永恒贡献的学者。我一生都为对数学有贡献而有着无比的欢愉。

因为我来自一个贫困的家庭,我没有太多的出路。但是数学并不需要太多金钱的投入,所以是一个比较容易的选择。但更重要的是,我着迷于数学的优雅和魅力。况且伟大的数学理论可以持续数千年,至少它可以影响好几代人。

我也知道数学可以极为实用,可以解决人类社会中任何需要推理的问题,甚至华尔街的金融投资都可以利用数学的工具。我的许多朋友在各行各业都取得了巨大的成功,其中包括大名鼎鼎的吉姆·西蒙斯。

我第一次遇到吉姆·西蒙斯是在42年前纽约州立大学的石溪分校。我当时惊讶于他对数学研究的痴迷。他已经在几何学中做出了很重要的工作,但是对新的数学发展还是兴奋不已。不过他也说,他非常喜欢金钱。最后他辞去数学教授,到纽约华尔街去创建投资公司。他极为成功,现在已经从他的公司退休,并决定重新再从事数学研究。显然,他现在做研究并不是因为金钱。他的生活是由兴趣所主宰,他的研究依然充满力量。

在我读高中的时候,我也有过从事研究中国历史的想法,部分是由于父亲的教导,另外一方面也是因为历史是我钟爱的科目。直到现在它依然是我的一大爱好。不过,我决定研究数学,不仅是因为我对它感到兴趣,我的志向是在数学上创造历史,而不仅仅是记录或解释历史。况且由于教学的需要,以及工商业极为需要有分析思维能力的职员,数学家比历史学家更易谋生。另一方面,我毕生从未想过赚取很多金钱,但在从事数学研究时,却自得其乐。我读伟大数学家高斯或黎曼的文章时,往往兴奋莫名,而自道:大丈夫,当如是!在数学上,我能与古人神交。这应当是我选择数学为我一生专业的理由罢。

数学带给我的兴趣已经远远超出我的想象。历史和数学都教会我作理性的思考。我记得第一次感受到数学的美是在初中二年级学习平面几何的时候。从简单的公理出发,可以推导出复杂有趣的定理,着实令我着迷。我听说,在古希腊时期,市民喜欢在大街上辩论。严谨的逻辑推理思维得到了发展,并被有效地应用到辩论之中。

在推理的学问里,我们需要建立一个假设,它必须来自于我们对周围环境的观察和体验。从我们所作的假设,我们可以基于逻辑推导出许多结果。我们需要的逻辑推理其实很简单。如果A蕴含B并且B蕴含C,那么A蕴含C。虽然这看似简单,但是建立一个良好的假设是创建任何坚实理论的重要根基。如何寻找命题B和C更是对一个良好数学家的考验。

也许你听说过约翰·纳什关于经济学的均衡理论的著名工作。他建立了一些简单的假设并由此推导出重要的结论。由于这项工作,他获得1994年诺贝尔经济学奖。

约翰·纳什将博弈论应用于经济学,并引入新的均衡概念,他改革了亚当·史密斯(1723年—1790年)的经典理论。他和其它经济学家将这些新兴的数学理论应用于经济学的研究,影响至今。

建立品味与文化

无论是从事科学研究或者经商,成功的研究所或企业应当体现出研究员或公司创始人的品味与个性。建立其内在的优雅文化是必要的。因为数学的工作都是基于严谨的逻辑推理,一台计算机就可以承担大部分推理的工作得到一些结果。然而,好的数学结果与不好的数学结果之间有着关键的区别。一台计算机可以生产出大量正确的命题,但如果没有人类思维的指引,绝大多数命题并无价值。在一般的情形下,它们无法构造可以加深我们对自然界了解的漂亮或有用的命题。计算机无法判断什么是重要或者是有趣的命题。

这带来了一个重要的问题:数学家如何发现重要而有深度的定理?

一个重要定理的证明通常由一系列复杂的推理所组成。如果我们看不清前进的方向,那么几乎不可能创造出这样的推理。

当数学家开始着手研究一个问题时,首先需要有一个好的规划。正如画家需要从画的类型来决定所采用的技术和媒介。另一方面,研究数学是一个动态的过程。很多时候,当新数据或新见解出现时,我们可能需要改变研究的规划。

众所周知,科学由许多科目组成。在探索自然的过程中,会诞生许多新的课题。有趣的是,许多新的研究课题往往来自于两个或多个古老科目的融合。非常类似于两家大公司的合并。如果我们了解这两家公司的文化,那么这很可能会是一个巨大的成功。反之,如果对两方的了解都不透彻,合并的结果,也可能是一个灾难。

爱因斯坦(1879年—1955年)曾经成功地将狭义相对论与牛顿引力理论相结合建立了广义相对论。这是物理学的巨大飞跃。爱因斯坦能够这样成功是因为他对这两个领域的精通超过任何同时代的物理学家。因此,我总是建议我的学生至少同时掌握两门不同领域的知识,并努力将不同的科目结合起来。这个建议可能对其他学科也适用。

无论是在科学,文学或社会学,我们都需要有广博的知识,这样才能开拓新的课题。在大学里,我们学习的知识可能取决于每所大学的要求。好的学校,比如哈佛,会要求学生学习许多不同领域的知识,打下良好的核心基础。哈佛大学的大部分学生不但学习刻苦,也经常互相交流,选修不同学科的课程。我有一位朋友的儿子,在哈佛大学读本科时主修埃及文学。我以为他会是一个学究。但他毕业一年后,开创了一间相当成功的高科技公司,由此可见通才教育成功的地方。

但是,当涉及到更具体的事情,大学教育还是不够的。我们需要进入研究生院深造,到公司实践学习,参加技能培训。无论身在何处,都有学习的机会。就我个人而言,我一生都在研究数学。但我也同时研究物理学,从我的博士后那里了解物理学前沿,并与他们一起工作。我的许多博士后拿的是物理学而非数学的博士学位。我选择物理学博士,是因为我需要向接受过物理学专业训练的年轻人学习。我觉得这一点很重要,我们不能仅仅学习了一门学科表面的东西,就以为自己掌握了这门学科。

如果没有足够的知识积累,很难找到合适的研究方向。

决 策

我们都知道,在我们的职业生涯中决策能力的重要性。这通常取决于许多因素,如个性、能力和外界的约束。为了选择我们的研究方向,我们需要权衡众多可能的影响因素:例如我们要考虑所需要的资源、可能产生的后果和团队的个性情感等等问题。

我们在做研究或创业的时候,往往需要当机立断,这需要一种直觉。这种直觉需要建立在知识的基础之上,与朋友讨论有助于拓宽这些知识和澄清疑点。经过足够的磋商,饱读相关的材料,权衡不同的利弊,都能帮助我们作出最终的决定。但是最重要的因子来自以下的直觉:如何更好地实现在研究或生活中早已设立的长远目标。

屈原说:“亦余心之所善兮,虽九死其犹未悔。”有时候人们会为了短期的目标,而迷失了人生的终极目标。在这方面,道德教育发挥了极为重要的作用。我非常感谢我的太太,她总是提醒我要坚持自己的理想。我们不能放任自己,为了短期的收益而忘记了初始的目标。即使我们生活的目标是为了赚钱,也需要考虑到社会结构已经发展到了一个非常复杂的状态,没有人可以不依赖别人的帮助或者不去帮助别人而获得成功。就如高科技的专利权——政府的法律保护和企业的互相尊重同等重要。

美国人擅于开发新技术的原因有很多,但保护知识产权也许是最重要的一条。知识产权不受到保护,就意味着工程师的成果很容易被人窃取。没有奖励,科学家和工程师很少愿意花费多年的努力去开拓新的研究!一般来说,中国企业家不太信任家庭成员以外的人,大多数私人公司由家人接班。遗憾的是,许多企业经过两三代的传接后就失败了。原因当然有很多,其中一个是因为他们的后人有着巨大的财富,流于安逸而丧失了动力或者对经商的兴趣。但是更重要的是对家族以外的人不信任,家族企业找不到最有能力的人来管理,这点也与法律不健全有关。在硏究的领域里,也会出现类似的问题。一般中国学者只相信自己的学生或系里的老朋友。造成这个现象的原因除了中国人的传统学派观念外,主要还是由于中国学术界存在剽窃的风气。在我接触到的学者和编辑的杂志中,我发觉中国数学界剽窃的问题比国外严重。至于其它学科也常听闻同样的问题。有些学者,甚至有的院士,他们在修饰文字后,将别人的想法放进自己的文章里头,由于不是搬字过纸,一般学者并不认为这是抄袭。一些机构却往往重用这些学者,这些山寨学者己经严重地影响到千人计划、重大项目的评选和院士选举等等,甚至起了控制作用。有人缺乏认识,有人不敢抗拒他们的欺诈,被迫跟他们合作,这是很不幸的事情。机构领导对此尚无认知,常年用少数的这种学者管事,确是中国数学未达世界一流的原因之一!

一般来说,美国高校和研究所富有浓郁深厚的学术气氛。但学者最终能否取得成功,仍然取决于研究人员是否能作出正确的选择和决定。

让我举一些亲自经历的例子。我在加州大学圣地亚哥分校工作了三年。从1980年开始,我带了不少研究生。1985年那一年,有15名研究生在我指导下学习。他们中有些成为了非常出色的数学家。许多中国大学的学生想到加州大学圣地亚哥分校来学习,我都尽力帮助他们,无论他们最后是否成为我的学生。

其中有一位来自北京大学的申请的学生希望学习数论。我安排他师从一位杰出的数论学家哈罗德·斯塔克,他是加州大学圣地亚哥分校和麻省理工学院的双聘教授。但当时的北京大学校长也许出于个人原因,没有同意他来加州大学。那个学生被派往普渡大学,学习并非他最感兴趣的代数几何。尽管他在博士论文中取得了进展,他仍然无法在毕业时找到合适的工作。

经过很多年艰苦的生活,他在一个朋友的帮助下,成为新罕布什尔大学的一个暂聘讲师。虽然环境并不尽如人意,他还是坚持做他心爱的数论研究。大约在两个月前,他解决了数论中最困难的问题之一。20多年的努力终于有了回报。虽然他的薪水不高,他却很享受研究的乐趣和所取得的成果。这位学生就是现在极负盛名的张益唐教授。

另一方面,我有一位在圣地亚哥任教时带的学生,他跟随我来到哈佛大学继续做研究。在我的指导下,他完成了几何学中几项重要的工作,但是他对事物有自己的看法,他在选择工作方面不接受我的建议。他毕业时,很多名校邀请他为助理教授。我的朋友汉米尔顿是大名鼎鼎的几何学家,也可以说是这个学生的偶像,他在圣地亚哥分校为这个学生安排了一个预备终身制助理教授的职位。这是一个极好的职位,因为这个位置很快就可以变成终身职,但这位学生拒绝了。他选择了普渡大学,因为他觉得普渡可以为他解决签证问题。他没有和我商量他的决定,事实证明这是一个严重的错误。三年后他被迫离开普渡大学,其实那些年中,他的工作还是做得很出色,但他不懂得系里的人事关系,被系中的教授排挤而离去。他因此觉得累了,不想再继续从事科研。他虽然曾经做出杰出的工作,但因为疲惫和失望,他选择放弃数学,为此我深感遗憾。

这两个例子表明,每个人在生活中都会遇到困难。但个人的能力和性格会造成截然不同的结果。我们如何克服困难是一个很重要的挑战。坚持不懈对于研究来说是非常重要的,但最重要的还是能从所做的事情中获得欢愉和成就感。我在上面提到的那个学生在他研究生涯的最后阶段时告诉我:他对研究已经逐渐失去了兴趣。我想这就是这两位数学家之间最主要的区别,遗憾的是,他们的人生也是截然不同的。不过,我还是希望我那位学生振作起来,前途还是光明的。

另一方面,我也见到很多早熟的年轻人,一早成名,却往往一念之差而开始沉沦。

在我的指导下,有另外一位学生在毕业时,读书读得不错,解决了我提出的一个有名问题的第一步。由于我的提拔,他受到数学界同仁的重视。但是几年后,他开始发表充满漏洞的数学文章,又依靠剽窃来获取本不属于他的荣誉,很快他就沉溺在虚伪的生活中,兴趣也从学术研究转到追逐名利,甚至联群结党,不择手段地去欺负年轻学者。这种现象已经严重地影响到中国数学的前途。看了他和政府官员的谈话和向媒体的宣传,我才对孔子说的“巧言令色,鲜矣仁”有比较深入的了解。屈原说:“何昔日之芳草兮,今直为此萧艾也。”至于何时他才能迷途知返,从既得权利的巅峰返回,做一些踏实的学术硏究,是一个有趣而又可悲的问题。在这个浮华和追逐名利的社会,这需要无比的勇气,我希望我的学生都能向张益唐学习。所以我们必须牢记正途并坚定不移地去追寻真理。

从这个故事来看,过早成名往往需要更严格的自律。来自同行的竞争压力,无知家长和有野心学长的期望,可以毁掉一个年轻人的光明前途。

中国家长都望子成龙,却常常没有顾及孩子成长时,除了学业和道德的教诲外,还需要有良好的伴侣,并得到年轻人应有的乐趣。

从前有一个才20岁的年轻人跟我做博士后。刚开始时,我没有注意到他的年龄,他的工作也算出色,和我及其他博士后一同发表了一篇还算不错的文章。但是有一天,我在中国访问时,突然接到一个电话,说他在家里不停地尖叫,被警察捉到精神病院去了。我才了解到他的情形:他在马来西亚长大时,极负盛名。他12岁中学毕业,就到加州理工大学读书,三年后完成学业,到康奈尔大学完成博士学位。这是中国家长都羡慕的年轻人。但是他进医院后,只有他的妹妹来看望他。据他妹妹说,他学业进步太快,没有任何朋友,连父母都没有办法跟他交流。过了大半年,我第一次见到他的父亲,我感到失望,他的父亲还继续对他施加学业上的压力。他回到新加坡后,过了两年,竟然自杀了。我为这件事感到惋惜。

所以我总想奉劝家长们,在教导小孩时,不宜操之过急。让孩子们多交一些益友,让他们知道生命的乐趣。

我的学生中,有成为一代大师的,例如在斯坦福任教的理察·孙就是,我和他一同成长,互相勉励,因此他在学问深受我在影响,但我也从他那里学习了使我一生受用不尽的学识。华裔学生还没有他这个水平。但是,李骏和刘克峰都在数学上有极重要的贡献,比我上述的在玩政治时呼风唤雨的学生贡献大得多。

当时李骏在上海参加改革开放后第一次数学比赛,得到第一。我孤陋寡闻,当李骏来美国做我的研究生时,我没有特别注意到他的辉煌历史。直到一个我从上海来的外甥指出有这么一号的天才时,我才知道这个事情。我想这是一件好事。他循规蹈矩、严谨治学,我送他到加州大学洛杉矶分校跟我一个老朋友学习代数几何,脚踏实地地学习两年后,他现在己经是这个学科的带领人,比我那位出名的学生做的工作重要得多。刘克峰也是在哈佛大学读书时博览群书,不单在几何上取得杰出的成就,对弦理论上也有深入的贡献。

除了我自己的学生外,我也看着一些用功的年轻人成长。其中有复旦大学的傅吉祥,在晨兴数学所的几个年轻数论学者和最近在清华大学的李海中,他们虽然受到某些有权势的院士排挤,仍然做出国际一流的工作,使我觉得兴奋。尤其是田野在数论上的工作,在国际上得到认同,得到三年一次的晨兴数学金奖,在众多高手竞争中,脱颖而出,成为中国大陆第一次得到金奖的得主。数论在他从前读书的大学已渐衰微,但出于兴趣,他坚持了下来,完成了大陆学者这三十年来最重要的工作,真是值得庆贺的事情。比田野年轻的有徐浩,他刚毕业时,我担任哈佛大学数学系的系主任,哈佛大学数学系以等同助理教授的职位聘请他四年,中国某些对他的工作亳无认识的院士却欺负他,连最基本的奖励都不愿意给他。由于哈佛数学系多年来不设助理教授这个职位,网上竟然有人质疑他在哈佛的职位。他还是很努力,解决了弦论数学上的重要问题,今年得到晨兴数学银奖。晨兴奖由十个国际知名的数学大师评审,其中三个大师是菲尔兹奖的得主,其他都是美国、德国、俄罗斯或英国的院士。这两位得奖的年轻人的成绩都值得我们庆贺。

所以急于求成,往往失败。而坚定不移的学习始终是做研究的不二法门!

结 论

艾萨克·牛顿(1642年—1727年)曾说过一句名言:如果我比别人看得更远,那是因为我站在巨人的肩上。或许我们还应该注意到这些巨人们是站在他们之前的那些巨人的肩上!任何想要获得成功的人,都必须学会向前辈伟人学习。很难相信如果不是站在这些巨人的肩上,我们能够取得超越他们的成就。要知道,在他们的年代,这些巨人也曾经被认为是天才,摆在我们面前的是,几代天才刻苦钻研所积累起来的成果。

我相信这个道理同样适用于商人,他们应该在建立企业之前学习了解他们所经营行业的基本概况。决策的制定要快而果断,当然前提是事先做过充分彻底的调研并集思广益。所以美国人说:世上没有免费的午餐!每个人都应该不断探索新的思路和新的方向,只有如此才能胜人一筹。我们应该知道,创新基于广泛的知识,开阔的思维和辛勤的工作。我们应该学会从不同的来源汲取知识,包括那些我们一直没有涉猎的科目,并且以无比的毅力和耐心向伟大的目标进发。

(丘成桐 1949年出生于广东汕头。1983年获得素有数学诺贝尔奖之称的菲尔兹奖,迄今仍是华人数学家中唯一的获奖者。1979年后,丘成桐把主要精力转向振兴祖国数学事业上,先后创建了香港中文大学数学所、中科院晨兴数学中心、浙江大学数学中心和清华大学数学中心,并亲自担任这些研究机构的负责人。现任美国哈佛大学讲座教授、国际顶尖数学杂志《微分几何杂志》主编。)(原标题:数学与生活)