NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

\mathbb{MA} 1505 Mathematics I Tutorial 9

1. Let $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + y^2\mathbf{k}$. Show that \mathbf{F} is a conservative vector field. Find a function f such that $\nabla f = \mathbf{F}$.

Ans: $f(x, y, z) = x^2y + y^2z + K$

2. Evaluate $\int_C g(x,y,z) ds$, where $g(x,y,z) = x^2 - yz + z^2$ and C is the line segment from (0,0,0) to (1,2,3).

Ans: $4\sqrt{14}/3$

3. Compute the work done by the force $\mathbf{F}(x, y, z) = yz\mathbf{i} + 2y\mathbf{j} - x^2\mathbf{k}$ on a particle that moves along the curve C given by the vector function $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$, for $0 \le t \le 1$.

Ans: 17/30

4. Evaluate $\int_C 2xy \, dx + (x^2 + z) \, dy + y \, dz$, where C consists of two line segments: C_1 from (0,0,0) to (1,0,2), and C_2 from (1,0,2) to (3,4,1).

Ans: 40

5. The base of a circular fence with radius 10 m is given by $x = 10 \cos t$, $y = 10 \sin t$. The height of the fence varies from 3 m to 5 m such that, at position (x, y), the height is given by the function $h(x, y) = 4 + 0.01(x^2 - y^2)$. Suppose that 1 litre of paint covers 100 m². Determine how much paint you will need if you paint both sides of the fence.

Ans: 5 litre

6. For each non-zero constant a, let C_a denote the curve $y = a \sin x$, $0 \le x \le \pi$.

Let $I(a) = \int_{C_a} (1+y^3) dx + (2x+y) dy$.

Find the minimum value of I(a) in the domain a > 0.