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INTRODUCTION

These are day to day notes from a course that I gave as Visiting
Ordway Professor at the University of Minnesota in the fall 1980. I
had used some of the material earlier for a similar course at the
University of Michigan and for a month each at the University of
Vienna and the University of Graz. The present notes are a little more

detailed, but still not in a definitive form.

My aim was to give a rather elementary course which would
acquaint the hearers with the geometric and analytic properties of
M&bius transformations in n real dimensions which could serve as
an introduction to discrete groups of non-euclidean motions in hyper-
bolic space, especially from the viewpoint of solutions of the
hyperbolically invariant Laplace eguation as well as gquasiconformal

deformations.

I wish to thank the University of Minnesota and the Chairman of
the Mathematics Department for having invited me, and above all my
Friend and former student Albert Marden for having initiated my visit.
T also thank the many faculty members and students who had the patience

to sit in at my lectures to the very end.

T am also indebted to Dr. Helmut Maler who helped me edit the
notes and supervised the typing. The typist, unknown to me, has also

ny sympathy.

Lars V. Ahlfors
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T. The classical case.

1.1. FRverybody is familiar with the fractiocnal linear transformations

_ az+h
(1) ¥(z) = 259
where a,b,c,dcf and ad-be % 0 . They act on the extended complex plane

C = CU{»} which we identify with the 1- dimensional projective space Pl(ﬁ)
In terms of homogeneous coordinates w = vy(z) can be expressed through

the matrix equation

This has the advantage that the Mobius group of all v can be represented

as a matrix group elither by means of the general Jinear group GIE(E) or

by The unimodular or speclial linear group SIE(C} . More precisely the

MObius group is isomorphlc to

ar,(¢) /e

%
where C ig the multiplicative group of nonzerc complex numberg and to

PSI,(C) = 8L, (c) / {*+1]

1 O)

o1 In spite of this identification we shall denote the

where I = (
Mobius group by ME(C) rather than PSIE(E) for the simple reason that
the identification dees not carry over to higher dimensicns.

We shall often simplify +(z) to vz and we think of v &g a matrix

normalized by ad-bhe = 1 . We should be aware, of course, that v and -v



represent the same Mobius transformation. It is useful to memorize the

formaila for the inverse in Sié :

(3) (2Pt (2

1.2. There is a natural topology on GLE(C) and hence also on SIQ(C) and
Mé(@} . GIP(E) is connected for the space of all complex 2 x 2 matrices has
eight real dimensions and the space of singular matrices has only six. The

mappling

a b
a b)+9 (,wi-bc ad - be
c d
of GIE(C) on SIE(C) shows that SIQ(E) is likewise connected. We can
congider SIQ(G) as a double covering of Mé(t)
The subgroups with real coefficients, are denoted by GI_?(B) R SL2(]R)

+
and M,(R)} . There is also a subgroup GIE(IR) with positive determinant.

P
+

GIE(E{) and Slb(ﬂi) are connected, but GIE(}U is not for cne cannot

pass continuously from a matrix with positive determinant to one with negative

determinant.

Any yéEME(I{) maps the real axis, the upper half-plane, and the lower

half-pilane on themselives, This is cbvious from

(%) vE - YE = —mEe
kz+d|

1.3. From (1) one computes

(5) vz) - viar) = Hzbeflec ey




and in the limit for z' -4z

6 "(z) =
(6) A (Qz+d)2

In particular, =z B yz 1s conformal. We rewrite (5) as

@ V2) - vz = v @Y e e

where 1t is understood that

. 1/2 {ad— be
Y(Z) = cz +d

with a fixed choice of the square root.

i.4. The cross-ratio of four points =z , z' , £, § in that order is

defined by

(2) (sztag:gl)z—‘z__“g_ : NS

1

-5

when this makes sense, iL.e. wien at most two points coincide. By use of (7)

it follows that
{9) (vz s y2' 5vE,vC) = (2,2, G5 L)

£or the derivatives cancel against each other. In other words, the cross-
ratic ig invariant under all Mobius transformations.
The cross-ratic is real if and only if the four points lie oa a circle

or straight lines. WNote that ocur definition makes



1.5. Trom {6) one obtains

- v'iz) _  _=2e
(10) vi(z) cz +d
and hence
(11) %{%—2—%=-%(Z+%)
if ¢# 0. It follows that

, yi{z)  xy'E) _ I, .,
{12} ,Yrr(z) 'Y”(g) ) (Z 5)

=_ L
(13) b Y”(Z’) - = 2

More explicitly, this is eguivalent to the vanicshing of the Bchwarzian

derivative;
A A T B AR S NV

There ig cobvicusly a cloge link between the cross~ratic and the Schwarzian

_ f/{/ 3 f" 2
(15) Sf £1 7 D (fr)
for arbitrary mercmorphic £ . For those who like computing, I recommend
rroving the formula
(16) (f{z+ta) ,f(z+tb), f{z+tc),f(z+td))=

2
(8,b,0,a) (L+ 5= (a-b) (e-a)8_(2)) + O(t)



(9]

1.6. The half-plane. We return to the action of SLE(IR) on the upper
haif-vlane H2 = f{z = x+iy ; ¥y » 0} . We uge the notation G = SIE(}R)

(or M {(R) ).

Iet K denote the isotroovy group of i1 . From
al+h _ s
ci+d
a2 2 - b o
we get a=d , b=-c , a +b =1. Hence g¢€K has the form
_ cos & sin 6
(17) g~ (—- sin 9 cosQ> :
In other words, K = 80(2) . More precisely, © and O+x give

different elements of K bub the same element of MB(]R) .

.t .
Iet A be the group of homothetic transformations ( _Ol> , T >0,
Ct

lu

and N the group of transiatichs (O l) . The groupr NA is the group of

similarities and also the isctropy group of o ., It is simply transitive on

e -
E as seen Iron

t 0 . 2
_l)(l) = u+t i
Ot

lHence G = NAK ; this is the Iwasawa decomposition. Each gé&G  has a unique

decomposition g = nak . FExplieitly, 1f g{i) =x+ iy , ¥y > 0, then
1/2 .
(18) =(lx) y/ O (coss sm_e)
& o1/, y«1/2 ~sin® cos @

- .
Every function  on H can be lifted to a function f on G

defined by f(g) = f(gi) . Conversely, a function on G becomes a function
2

cnh H it it is constant on the left cosets g K . H2 is identified with

G/% . (many authors prefer KNG ),



1.7. The circles orthogonal to the real axis, including vertical lines, are
mapped. on each other by all g€G . They are the straight lihes in Poincaré's

model of hyperbolic or non-euclidean geomebry. Any two distinet points

2
z,,%, €0 lie on a unigque n.e. line (Fig. 1)

Pig. 1

A distance can be defined by the point-pair invariant

(19) 5(21_9Z2) =

the invariance is seen from the relation

2 - -
(EO) 5(ZlJZ2) = (Zlazlﬁzgszg) *

Foxr 22 ¥ Zl we obtain the infinitesimal invariant

(21) ds = ldz|

"
J

2
(we have dropped a factor 2 ). This defines the Poincar? metric on H

It leads to a new distance function d(zl ,ZE) defined as the minimum
i
. dz
(22) d.(Zl B 22) = mln g i—y—-'—



over all paths from z2 to Zgy The shortest curves are the geodesics.
To £ind the geodesic we use & g¢h which maps zl,z2 ot iyl ,iy2 .

Tt is readily seen that the vertical line segment from iyl to iyz is

minimal, and thus

‘ ¥
] ] = —_ 2
(23) d(iy, , dv,) = | 1og ra

It follows that the geodesics are the orthogonal circles.

Te relation between & and d  1is determined by

yg - yl B d’( lyl L] lyg)
r +y - = ~
Yo a0y, 5 1y,)
e + 1

from which we conclude that

eh) 5 = tanh%— .

The distance functlon d is additive on n.e. lines, l.e. d(zl.,z3) = d(z

y if =z, lies between = and =z

+odlzy 2 o 1 3

3

We can use (24) to verify that & 1is a distance function, Tfor 1f

dgd +d, then

]
d d
a tanh Z%-+tanh ??
=t — + .
8] oanllg < dl dg < 61 52
l+tanh7? taﬁh7§

1.8. There is a different way of computing d(zl ,22} which shows the
additivity at once. We refer to ¥ig. 1 and compute (22 ,er,gl_,gg)

Tf the circle is mapped on the imsginary axis the cross-ratio becomes

_ ¥z

(iy, » iy, 5 0, @) = 2



Thiz proves the relation
(25) d‘(ZlJZE) = log (ZE, Zl, gl’ 52) *

In this form we may even regard d(zl ,22) as a gigned distance which becomeg

negative when the order of 3 Z is reversed. The additivity on a geodesic

1272
follows at once from
(Zejzngjige) (2332'23513%2):(235219§13§2J .

1.9, The length of an are is

dx 4
== . -
E ¥

It is a useful exercise to compute the area of a n.e. polygon P -

(Fig. 2)

Fig. 2 I



O

By Stokes' formula

A=u[‘§~§—%g'—3~r~=drd(%)/\dx=f ax
Py p 7 ap 7
. . - i6 dx
Fach side is an arc of zZ-8 = Te and. Sl -8 . I 46 meagures the

change of the angle of the tangent. Tor a simply connected polygon the total
change, including the Jjumps at the angles, is 2n . If the outer angles are

B\; and the inner angles Civ one obtains

A=28v~2ﬂ=(n—2)ﬁ-—2av

P 2
1.10. It is easy to pass from the halif-plane H to the unit disk B =

v R - 2
frec; l g] <11 . We want to choose a canonical Moblus mapping r[g-bB .
A pood choice is to let z = 0,1 ,= correspond to {=-1,0,1 . This
gives
. -1 S
o= ;S - e o
(26) w L A +i 2 % : L g__ i
I . . *» _ 1 _ & . . .
We introduce the notation {7 = = = ——5 for the symmetric point of
¢l
g

» 2 BO

{ with respect to the unit circle. By the reflection principle =2

=

over into ¢, { and by the invariance of the cross-ratio

- Gala

- B
|l"‘ ;l ggl

(27) (21321,22,22) :(gl:g:‘jagg 5@;) =

2
This shows that the point-pair invariant in B is

o, ~ ¢,

5(Cla€2) = m



and the corresponding Polncaré metric is

{(26) ds = —E—EEQL

2
1- gl
(remember that we had suppresged s factor 2 ).
It ig again trivial that diameters are geodesics and hence the same is
true of all circles orthogonal to the unit cirele. The distance from ¢ 4o

r >0 is

B

d
d = da{o,r) = J’ 5 = log s T = tanh =
o 1-t 1-= 2

Wote that B{(0,r) =1 .

Another observation is that

1+r
1~

(r :'On"l:lJ =

If the geodesic through gl ’Qg meets the unit circle in Wy 5, We have

thus
d(Cl; g2) = lo%(‘;g 2 gl;wl:mg) .

From now on we prefer to use the variable z  in the wnit disk, and

with the notation of Fig. 3 we have thus




(29) d{Zl 2 Ze) = log (2'2 2 Zl ng }§2)
L.i1l, The gelf-mappings of B2 which take a idinto O are of the form

(30) vz = e e

Fig. &

For thizs purpese we construct a¥ and the orthogonal circle with
center a* as ghown in the picture. The reflection in this orthogonal circle

carries a iInto O and an arbitrary point =z into

Il
i
Wk

o7 = axr (Jar - 1(m-an = - 2

]|

1-a

To cobtaln a sgenge-preserving mapping we let Ty be Tcllowed by reflection

in the line fthrough the origin perpendicular o a . If arga =& this

. . 2ic-
reflecticn is exXpressed by wh - e * w ahd we end up with the mapping

m - -4
{31) 7 > T,7 s

The most general mapping is Ta Tollowed by a rotation about the origin,

and 1t is hence of the form (30). We make a note of the formulas



2
7 (z) = L= la”

(1-382)"
; 2 2
(32) I_IT&ZF o (1-]a _)(lélﬂ )
LL— azl
=

2 7 2 2
1-11 =] 1- |z
a,
all well known to conformal mappers. The last formils expresses the invariance
of the Poincaré metric. The normalization of T, is such that T!(a) >0 and
TH{O) >0 .
1(0)

Note that T ¢ = -a and hence T =
a -3 a



2.1,

13

IT. The general case.

Before passing to the general case we shall Pay special attention to

the group M(HE) of Mdbius transformations acting on the upper half-space

53

t{x = (xl > %, ’Xg) » %y > 0) . Already Poincaré was well aware that the

_X_
action of M(C) can be lifted to 13 or if one prefers to all of RO . )

In fact, any vyeM{c) is a product of reflecticns in circles (or straight

lines), the circle determines an orthogonal hemisphere (cor half-plane) and

the reflection extends to a reflection in the hemisphere. One has to show,

of course, that the end result does not depend on the particular Tactoriza

tion of vy .

The three-dimensional upper half-space ig very special because of the

fact that one can make use of gquaternions in a very elegant manner.

(1)

where uw,vEEe . TIn fact, if we write 1 =

The quaternionsg can be identifisd with matrices

(%

=T

1i0Q. . - 10

01 . . .
= = = -+
k (i 0) and u 1_114-:;,1.12 s V vl 1v2 we obtain

(2)

2]

have

u v : .
(_v ﬁ) Uy Fouyd o+ Vo3t vk

u + v

The conjugate of z =u + vj ig 2 = 3 - vi and the absolute value
IE

is given by |z|® = zz = lu|2 + ]v]2 - When computing the product we

used the rule aj = ja for arbltrary complex a .

*)

We have replaced the notation D%(C) by  M(C)



1h

3

Polants in R will now be denoted by 2z = x + yj with =x£C , VER

(y » ¢ if ZGHB} .  Suppose VEST_?('C) is given by
y=(ab) » ad - be =1 .
c d
We define the action by
-1 -1
(3) vz = (az+b)(ez+d) 7 = (zc+d) (zat+b) .

We need Lo show that these expressions are equal, and that ¥z ig a special
guaternion of the same form as 2 .

In the first place, the two expressions (3) are equal if and only if
{ze+d)(az +b) - (za+b)(ecz+d) = 0 -
This works out to
zeh + daz - zad - bez = 0

which is true because ad - be is real.

The next step is to actually compute wv& . To begin with

(az +b)(ecz +d)

v =

|cz+d.[2
Here
catd = cx+d + eyj
cz+d = ex+d - ey
aztb = ax+b + ay)]

(az+b)(ez+d) = (ax+b)(cz+ad) + aEyE + [~(ax+b) cy+ay(cxtd)];

- -2
= (ax+b)(cx+d) + acy” + yj
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and thus

(1) _ f{ax+b)(cx+ad) + aEy2 + v
Y2 z
|cz-+d$

which is of the desired form. Also, [ez-*d]g = |cx-#d[2 + Icleyg

o

2.2. We shall also compute a formula for the difference yz - v2' . We

write it in the Torm

NZ - vz = (az-Fb)(cz%~d)-l - (z'c-kdj—l(z'a~*b)
(5) = (z‘cﬁ-d)_l{(z'ci—d)(az%~b)— (z’a-*b)(cz-%dj](cz-kd)"l

= (z'c-*d)—l(z-z')(cz—*d)_l

This is at least similar to +he corresponding formula (1.4) in the camplex

cage.

Un passing to the absolute values we obtain

z-z']
lcz +dffeat +d]

(6) vz = yz'| =
and infinitesimally

n) lay(z)] = %2l

Comparison with (L) shows that

i
g
Bl

(8) da

is dnvariant.
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The crogs-ratic should be defined by

-0 -1
(Zl’ZEjZB7ZLI-J = (Zl"ZB)(Zl"Zbr) (22-24)(22—23)
By use of (5) one obtains
-1
(VZJ_ 2 'YZQ > 'YZ:)) > 'YZH) = (Z3C +d‘) (Zl > 2‘2 2 23 2 Zl{_‘}(ZBC—Fd‘)

Thus the matrices corresponding to the guaternions (yzl s Y25 ,YZB ,y@u) and
(21.,22 533 ’ZM) are gimilar. Because the absolute value is the zguare root
cf the determinant and the real part is half of the trace of the matrix (1)
it follows that the absolute value and the real part of the cross-ratio are
invariant.

The stabilizer of J 18 the group of unitary matrices

o

2 2
(_aB a) , [a| + lbl = 1 .

The full group M{Hg) is transitive, for w~j =u+vj, v > 0, by taking
2 -1/2
- <vl/ wv Y/ )
o vhl/g
2.3. The quaternion technigue works only for M(HS) and even if it looks
elegant it 1s not particularly useful. We shall now again deal with actions
on the entlre space ®” . We shall use the netation = = (xl s vas ,Xn) e r"
and when operatling with matrices we treat =z asg a2 column vector. The group

of similarities consists of all mappings

(9) XPmx+ b
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where bERS and m is a conformal matrix, l.e. m =3k with ) > O

and k€0{n) .

Reflection in the unit sphere ig defined by

(10) x1px = Jx = —Fg (JO =w , Jo = 0)
||
. 2 2 2 . *
whers of course |x|T = xl+ +xn . We use mostly the rotation =x" , but

sometimes one needs a letber symbol for the mapping, and then we use J .
Obviously, J2 = 1 , the identity mapping. I will algo gtand Ffor the unit
matrix T .

al

We adopt the following definition:

Definiticn. The full Mohius group f:i‘(]Rn) is the group gensrated by all

gimilarities together with J . The Mdbius group M(]Rn) is the subgroup
whose elements contain an even mumber of factore J  and sense-pregerving
similarities . n

In other words, M(IR") dis the sense-preserving MSbius group. lNobe that
7 do not use M(_f{n) as being too pedantic.

The derivative of a differentiable mapping £ from one open get in ]RI:L

to another is the Jacobian matrix
£1(x) or DFf(x)

with the elementg

(11) Fr(x),. = =D, £, (x)

The derivative of a similarity +x = mx+b ig the comstant conformal

matrix m . The matrix J'(x) has the components
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1 2Ki‘x,
(12) Tyt pE Gyt i)

for == % G .
It is almost indispensable to adopt a special notation for the ubiquitous

matrix Q(x) with the entries

. o=
(13} af )ij |X‘2

This enables us to write (12) in the form

(k) J'(x) = —i@-@-eqxn .
E3

This is perhavs the most important formula in the whole theory of Moblus
transformations.

1
From Qf = g we obtain
2
(I~-2g)" =1

which means that I-2Q¢0(n) . Thus J'(x) is a conformal matrix for each

XF 0.
Tt now follows by the chain rule that «+'(x) is a conformal matrix For

any y{;ﬁ(ﬂfﬁ - In other words, all Mdbius transformations are conformal

with a suitable interpretation at « and v o .

Definitiocn. TFor any y{Eﬁ(Ifl) we denote by |v'(x)| +the positive number

X

v (%) € o(n) . 1in other words, [v'(x)]| s the linear change

such that

of scale at x , the gsame in all directions.
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Ancther application of the chain rule proves that

(15) v - vy | = I*r‘(x)ll/2 Iv'(sf')ll/2 EXN3!

Tn fact, this is trivial when v 1is a similarity, and for J we obtain

.- 2 _ X ¥V e . 1 + 1 _ 23y _
T E TR TR WE T RN

2
eyl s s o o x- vl owy )

2 2
=" vl
If vy, and vy, satisfy (15) then it is alszo true for Y Yo

/ 72y

R R [ G 15 3 G o= T | =
) 172 1ol 2 s G 172 g 172 (o] = 1) G 172 (gt ()72
EST

As in the complex case we wish to use (15) to prove the invariance of

the cross-ratio, but thig time there is only an absolute cross-raiio

|a»c| ] lb-—c|
B

(16) la,b,e,d| =
which is obviousgly invariant in the sense that
(17) |Va > YD 5 e :le = la sb,e,d

We can use the invariance to prove that circles are mapped con circleg.

. 2
Indeed, it is a classical theorem in R and iﬁB , extendable to i s

E'S )
po= +lla b x
* lei‘ *n9n



that a,b,c,d lie on a cirele in cyclic order if and only if
lz-b||le-a| + b -cjla-a] = |a -cj|b-a] . This condition can be written
in the invariant form fa,d,b,c| + |c,d,0,a] =1 .

As a second application of (17) we prove the following important lemma.
Lemma 1. If v leaves o fixed, then v is a similarity.

Proof. 1If ye = o then +x - yvO leaves 0O and o« fixed and it is
sufficient to prove that 0 = 0, vyeo = o implies vX = mx with a
'constant conformal matrix m . In other words, we need to show that vt{x)

is constant.

I'irst,
|‘{K:W90,m| ZIXJYJO:“’I
or
Wext IVXJO:YJ{:EO| = IXgO:Yaml gives [\Tc\é'rlw' ) ‘]Er;zirl or

2 2
e -y | = 2% | =y

which implies (yx ,vy) = kg(x,y) .

It follews that
. P 2 2
vt y) -y -y [T = AT [zt y) - x-y|T = 0

g0 that
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Wx+y) = yx + vy

yti{x+y) = v {x) = const.
Corollary. If a # b are both finite, then the most general € H(R™)
with ~va = 0, wb =« is of the form

(18 ve = ml(x-p)" - (a-1)"

where m is a constant conformal matrix.
In fact, it is clear that (x-Db) -~ (a-b)" takes a into © apd b

into = .

2.%.  We denote by M(B") and M(Bﬂ) the subgroups which keep

n

B = {x;|x] <11 invariant. Because MSbius transformstions are bijective
. . n-1 . el "
the unit sphere g = {x; |x| = 1} and the exterior of B are also in-
variant.

lewma 2. If vy&M( 8%) and YO = O, then vy is a rotation (i.e. +x = kx ,

keo(n) ).
Proof. TIf ye = o we know by Lemma 1 that + = mx and because Im_x[ =1

for |x] =1 it follows that m = k €0 (n)

Assume now that ’Y-lm = b # o . Then (18) implies

)*

Hx-b) + b'*l = const.

for }:| =1, But
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CERARNEE - o

x} = 1, and that is impossible since b # O .

Hence Ix-'b[ = const. for

AT
2.5. We shall now determine the most general ~€M{B7) . This is done almost
exactly as in 1.11 for n = 2 except that we do not have the complex notation.

We begin by proving a non-trivial identity:

Lemma 3.
cy 2 * *
(19) (x-y")" +y = |y|"(r-2a(y))(x" -y)
Proof. As it stands (19) does not make sense for y = O , but it is cbvious

that both sides tend to 0 Tor y =+ 0. We assume now that y % 0 and

write
*, %

Ax = (z-y)

(20)
2 * *

Bx = jy{(I~2qy))(x" ~-y)" - ¥

In other words, we Treat 7y as a constant and have to show that Ax = Bx .
It ig immediate that
* *
Ay = By = o
Aes = B = 0 .
) e - . - -1 - -1 .

Therefore, O and o are fixed points of AB and by Lemma 1 (AR ~)' is

constant. But then A'(x)B'(x)"~ is also constant, for



AE D) (x) = AT (B ) - (F

oy - -1
= A'(B x) - B'(B lx) =
(A" B'“l)uBX = congt.

From (20) and (14}

I-20(x-y")
% - 71

A'(x) =

(21) 2 *
|1 - 2ay ) (T - 29(x" ~ y)) (T - 26(x))

1 - 312 |x|°

B? {X) =

and for x =7y we find

(1 - 200 |xl®
(1-ly|5°

A(y) = B'(y) =

Hence A'(x) = B'{x) for all x , and since AOQ = BO = -y 1t follows that
Ax = Bx .

Direct comparison of A'(x) and B'(x) as given by (21) yields
(22) (I-26(y))(I-2a(x-y")) = (IT-2ax -y))(I-29(x))

This 1s an important identity.

2.6. We repeat the construction that wag given in 1.11 and refer to the

*
same figure. Glven acB (a # 0) we construct a  and the sphere

Sn_l(a% 5 (]aﬂ2 - :L)l/gj with center a and radius /1 - [alg / Iat which

. n-1 ‘ . s s - .
intersects 3 orthogonally. The reflection in this sphere is given by



2

=3 o % = et + (Ja*(® - 1) (x - a’)”

We let o, be followed by reflection in ihe DPlane through the crigin

Perpendicular to s . Tt is eagy to see that this second refilection amounts

to multiplication with the matrix T - 2g(a) . In fact

2{yals
v'os (T-20(a))y =y - Blme
la|
and Fig. 5 shows the location of ¥,
Fig. 5
We now define the canonical mapping
! = -
(2h) Tx = (I-2¢(a)) ox

and conclude that the most general v E I\'E(IBn) with ~va = 0 is of *he form
kT~ with k€ o(n) .
The explicit expression For Tax becomes much gimpler if we use the

identity (19). It is clear that (I-EQ(a))a* = 2" and thus we obtain
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*y¥

px = -t + (|27 2 1)(1-20(a)) (x -

Replace y by a in (19) and multiply by TI-28{a) . We obtain

(1 -20(2)) (=" = a + [~ 2)"
and
I% = -2 4 (]aﬂg—l)a + (1- [a.|2)(x*-a)%
Finally,
(25) T x = -a & (1~]a{2)(x*-a}* .

Thig iz ag simple as one can wish, but if one wants to aveid the x

notation it can easily be broughw to the form

(26) T x = (1= |2%)G-a) - |x-al®a

a [X}a‘]E

where [x,a] = |x||x -a] = la||x-a"| and

[x,a]% = 1 + jx|2 ]a|2— 2xa

2,7. We collect the variocus expressions for Tyx that we have derived.

* Tx = (I-24(y) ™ (517 - 1 =y
2 ¥ e
b) Tyx:_y+ (l"l'YI Y x - )
c) R L PR (2> 2o ¥ 715y
’ [z,y]
a) Ty = (l-lylg)(x-y) - IK-YIEY

p
¥ [x,v]



Recall that [x,y] = |x||y-x"| = |yt = -v7 .

a) and b) are easy to differentiate and yield

2
o) = 22l (roaggy) (- rage- v4))

2
= &;;iil_ (I..EQ(X*l-yJ)(I-EQ(X)J .

We have already remarked on the identity of the +wo matrix products.

choose to introcduce the gotation
Ay) = (T-26(r) (I -2a(x-3"))
which leads to
Ax,y) = aly.x)”
Note that this can alsc be written

(28) Al,y) My,x) = T

It is helpful to view the formula

2
(29) T (x) = i:_lﬂg_ Az, y)

y £X:.Y]

a8 & repregentation in polar coordinates:

1=~y e

[x,v]

(30) ‘T.{r(x)l =

is the "absolute"” value and A(x,y} is the "argument" of T&(XJ

We make a note of the special values

26

We



pat
(31) R e -

- Also T O = - and hence T =T .
> Ty I -y Y

Direct computation of ITyx| from any of the formulas a) - d) is very

laborious. Fortunately, we can use the difference formula to obtain

32| = lne - ny] = a0 Y2 a7 ey

= AETY
(32) [Tyxl = JI?EL

Mow & short computaticn leads to

(33) o x]? = 2o D L
d LX»Y]E

Togetner with (2¢) we have thus
N |72 ()| 1

(3&\ — =
IRLE

5
|

We have thereby proved the invariance of the Poincaré metric

R (35) as = 2ol

2
1- |x|

It is again seen that every orthogonal circle is a geodesic. The

—~ hyperbolic dlgtance from the origin is

1+ 4x
(36) Aom) = 108 T

and more generally
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(37) a{x,y) = logly,x,E, 7

.where £ , T are the end points of the directed geodesic from xz to v .

el

2.8, There is a close relation between Tyx and Txy » To derive it we shall

Tirst prove:
LEMMA. For any YGEM(BH)
(38} T, (yx) = Ty:: .

proof: Let Ix and Rx be the left and right hand side of (38). Clearly,
Iy = Ry = 0 and hence IR (C) = 0 . But
’YI
LI (y) = »—&._gl)_g = R'(y)
1- vyl
where the left hand equatiocn is obvious, whereas the right hand equation

follows by application of {34). Thus

_ll ] I _1
(I 7)(0) = L(y)R (y) " =1

which proves that IR - = I . Apply the Lemma with v = T, - The left hand
gide is

T, . (0)= =Ty .

Ty
and one obtalns

]
oo () o
x’ T (y) ¥
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or
N %
T, A(&;X)Ty
(39)
T % = -0(5,Y)T,y
vy (29), (30).
Remark. Ty ig not defined Tor |y[ =1 bub by formula b) we should write

Tyx = -y , by continuity. According to (39) it follows that

1l

1l
-

AMy,x)y for |yl

e
(%0)

1l
[

TyX = Alx,y)x for |x|

One more formula. Differentiation of (38) with respect to x yields

t

Cve) v = T Ty

T T
Yy

On equating the arguments in (29) one obtains

3

(1) s s W) ThtE = T aGey)

2.9. Although the formulas for the selfmappings of Bn are simple enough it
is sometimes more advanbageous te concentrate cn the geometric picture.

Recall that every v &€ M( Bn) s ¥ # I , has a canonical representation

A =
(42} Y=kT,

-1 .
where a =y 0 and k€80(n) . Since |k| =1 we have

1= a'2

[x,a]°

il

(43) v )| =l ()]
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The set {x ;IY'(X)i = 1} is nothing else than the orthogonal sphere with
_)(.
center a . Nothing prevents us from considering the full sphere rather

than only the part inside BY . Tt iz called the isometric sphere of v

and we denote it by K{(v) . Moreover, we denote the inslde of K(v) by
I(vy) and the exterior by E(vy) . Observe that the Ideatity has no isometric
sphere.

-1
The chain rule applied to vlv "x] = x yields

vivTE D )] = e
and of course Just as well
RN I BRI

From this we draw the following conclusions:

¢ maps T(y) on E(Y) and u(y) on T(¥')

v * maps I(yrl) on E(vy) and E(\rl) on I(Y) -

of course this does not determine v completely, but only up to rotations
apvout the common axis of the unit sphere and the isometric aphere.
N -1 . .
Furthermore, the restriction vy :K{y) * K(y 7) 1s an isometry and hence

a congruence mapping both with respect to the euclidean and ﬁon—euclidean

geometry.
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ITT. Hyperbolic gecmetry

3.1. This is a short chapter devoted to two separate tasks:

o . o Py . ;
1 Derive some formulas of hyperbolic trigonometry.

20 Show how to represent Mobius groups as matrix groups.

3.2. Iet ABC be a non-euclidean triangle in Brl . We denote the angles by
A, B, C and the n.e. lengths of the opposite sides by a , b, ¢ . We shall

prove:
I. The hyperbolic law of cosineg:
(1) coshe = cosha coghb - sinha sinhb cosC

IT. The hyperbolic law of gines

(2) sind _ siQB _ sinC
sinh a ginh b gimh ¢

3.3. Proof of J. We may assume that C = 0 , that a falls along the positive

xl-axis and that b lies in the ~ plane. It is thus sufficient to

%o

consider the case n = 2 and we may use the complex notation.

Fig. &
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b
The points B and A are at euclidean distance tanh-% and tanh 3 from O

‘ b ic
Hence B and A are represented by taﬂh% and tanh 5 e’ . The polnt-
pair luvariant is
| tanh % - tanh »% e*C | .
(3) 5(A,B) = a b oiey C s
ll - Lanh 5 tanh = e |

Just as in ordinary trigonometry all the hyperbolic functions can be expressed

rationally through tanh% . The formulas are
1+tanh2§
cogsh = = 5%
l-tanh =
2
2 tanh
. _ z
gsinh x = 5 x .
1~ tanh =
2
From (3)
(1+ th* Ea')(:;_whg l,;) - bth & th % cos C
cosh ¢ = Ry 5
{(1-+th »é-) (1-th 5)

= eogh a coshb - sinh a &inhb cosC .

3.4, Proof of II. From (1)

cosh a coshb - coghe

cos ¢ = ginh a sinhb
2
2 (cb®a-1)(ch-b-1) - (cha chb - che)
gin  C 5 5
sh™a sh™b
sin2 c . 1~ chga - cheb - chec +2cha chb che
shg ¢ shea. s‘ngb shgc

The symmetry proves (IT).
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3.5. In this section we want to show that M(Rn_l) is isomorphic with

M(Bn). For n = 2 this was already done in Ch.I by observing

{tacitly) that M(Rl) and M(Hz) are both equal to PSLz(R), while

on the other hand M(Hz) and M(Bz) are isomorphic because there is
a conformal mapping from H2 to B2

In the general case we begin by extending an arbitrary ysM(Rn-l)
to a mapping in M(Hn). For this purpose we identify Rnﬂl with the .
subspace {xn=0} of RY . Recall (Corollary 2.5) that any yeM(Rn—l)
with ya =0, vb =« , b # «® has a unicue representation of the form

* *
(4) vx = ml (x-b) - {a-b} 1

where m = Ak, » > 0, ke 0(n-1). If we replace m by m we obtain a
mapping of r? whose restriction to H? is an extension of ¥

(In case b = « (4) should be replaced by vyx = m{x-a)). This
construction shows that M(Rn_l) is isomorphic to M%) .

It remains to prove that M(H™) is isomorphic to M(B"). For this
it suffices to find a standard Mobius transformation oO: 1"+B” which
we choose so that x = (O,en,W) correspond to ¥y = 0X = (-en,O,en)
where ey is the last coordinate vector. The restriction of o to

%7+ ig the usual stereographic projection.

The following pictures illustrate the choice bettern than words:

LSS
0

. /Y
X—e // f/ / ‘

~ Q.




34

(m-2,) /

Yy 2gX = [en

Fig. 7

The correspondence is thus given by

= + 2 HyF
(5) y= (e +2(x-e))
* *
= + -
X = e, 2(y eﬂ)
In terms of coordinates one finds
. Exi
y, = g (i:l,...,n—l)
x-e|
i}
(6) .
y-*z »lzlbll—
n

x - |7
n

and



2y,
i
X, = 5 (1 =1,..0 ,0-1)
ly - e,
(7] .
- -yl
x, = 5
iy - e,
) *
when x = O one verifies that ly]=1, y =y, and (6) reduces to
z2 2
(8) , = i g o= Azl -2
S PAE B |xff e
and. for iy] = 1
V.
- i -
(9} x, = Ty x o .
n
Chne recoghizes these Tormulas.
. . . n-1 .
3.6. The sterecgraphic projection (8) maps B = [Xl yree s E 1 0} with
2 n-1
K§ +"'-Fanl < 1 on the lower hemisphere of S , l.e. [y‘E]Rﬂ; ly| =1, yn<:O} .
Iet it be followed by the projection (yl s s ,yn)*9 (yl seer s Vg ,0) . The
result is a mavping of Bn—l on itself defined by
2%
(10) y= —2E
[=|® + 1
zer™?t , 1x| <1 . This is of course not a Mobius transformation, for the

mapping (yl_,... ,yﬂ)f% (yl seer s ¥ , 0) is not conformal.

What is the nature of the mapping (10)? The stereographic projection is

-2
confermal and leaves the sphere s = {Xn =¢, |x| =1} fixed. Therefore

. . - . . -2
it maps orthogonal cirvcles of Bn = , i1.e. cireles orthogonal to Srl on

circles on the hemisphere, which are also orthogonal to Sn-2 .
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Fig. B

But an orthogonal circle on the hemisphere lies in a plane parallel to e, and
its projection is a straight line segment. In other words, (10) maps every
geodesic 1n Bﬂul on the segment between its end points. This is also obvions

by a simple computation. The equation of an orthogonal circle is of the form

Ix-al® = |al® - 1 (|a] > 1)

or

and thus (10) is equivalent to &y = 1, the equation of a straight llne.

This cagn be used to consiruct the Klein model of hyperbolic space. In this

model the noneuclidean lines are the line segments in Bﬂ“l . The distance

1

of two points y' , ¥y is defined as d(x' ,x") between the corresponding

- - _. r
peints in the Polncare model.
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A glance at Fig.9 shows that |a',b’,c,d]=]a,b,c,d]2 , Thus the n.e.

distance between %,y in the Klein model is % loq]x,y,g,n[.

3.7. We pass now to the matrix representation. Recall that the group

n+1l

O{n,1l) acts on R and leaves the quadratic and bilinear forms
2 2 2

LR ,X> = xo Xl =~ e Xn

K,y> = X Y, ~ XYy " oeee T X Yo
invariant. In matrix language A £ O{n,l) 1if

(11) AT (r Oha =t Oy
O —ln O --ln

It follows from (11) that (det A)2 = 1 . The subgroup with det A = 1

is denoted by S0(n,1l).

Geometrically, the lightcone {<x,x>=0} and its interior {<x,x> >0}

are invariant under all A & 0(n,l) . The same is true of the hyper-
boloid {<x,x» = 1} with two mantles, one with xo>0 and one with
® <0 .
o)

Theorem 1. The groups M(R™ 1) ana sS0(n,l) are isomorphic.

Proof: The upper hyperboloid

U= 1{x ¢ Rn+l|

<x,x>= 1, x0>0}

and the plane section
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+l]

[

v = {x'er" <x',x'> >0, xL = 1

are in bijective corre;pondence through the central projection
x' = x/xo. Fig.20 shows x,y € U and the intersections £,n of the
line through x and y with the lightcone together with the projec-
tions x',y' and &',n' .

By elementary geometry the cross-ratios [|x,y,&,n| and b,y €0 ,nt

are egual. To determine their common value we observe that £ and n
Xttty

1+ t
This leads to the equation

are both of the form with real t satisfyving <x+ty,x+ty> =0.

(12) <x,x>+2t<x,y>+t2<y,y> = 0

which consequently has two real roots tl,t2 corresponding te £,n -
The cross-ratio turns out to he tl/t2 which is positive.

The section V can be identified with the Klein model of 8" The
straight line segments are the geodesics and d{x',y'} = %llog tl/tzi.
By conjugation with the central projection each A £ SO(n,1) determines
a bijective mapping A' of V on itseif. Because the coefficients
of (l2) are invariant the same is true of the cross~ratios and hence
also of the n.e. distances d{x',y'}. This means that each A' is a
n.e. metion, and it is ocbviously sense-preserving.

Conversely, if A' 1is a n.e. motion it can be lifted to a
mapping A of U which carries collinear points (x,y,&,n) into
collinear points {Ax,Ay,Af,An) with the same cross—-ratio. Because

of this the coefficients of (12) will remain proportional to each



other, and

as well.

since

<Ax,AX>

39

it follows that <AX,Ay>=<X,y~>

Fig.l0
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The mapping A c¢an be extended to all x inside the double

D %5 ~1 .
cone by defining Ax = <x,x>° A(<x,x> * x) 1in the upper cone and
subsequently Ax = =-A({-x) in the lower cone., One verifies that this
extension still satisfies <aAx,Ay> = <X,y> as well as
<A(dx)—an,A(ax)—an> = 0

<A(X+y)—Ax—Ay,A(x+y)—Ax~Ay; = 0 .

It follows that A{ex) = aoAx and A(x+y) = Ax + Ay . In other words,

A is linear, at least inside the double cone. Because every X € Rn+1
is a linear combination of vectors in the cone it is clear that A
extends to a linear mapping of Rn+l on itself, and because <&x,Ay>=
<x,y> it is represented by a matrix A ¢ O(n,l) ; since the upper cone
maps on itself it is even in SO0(n,1l).

Tt is evident from the construction that the correspondence
pbetween A and A' 1is bijective and product preserving. We have thus
proved, so far, that MD(B) is isomorphic to SOG(n,1). In {(3.5) we
-1

showed that Mn(B) is isomorphic to M(Rn ), and this completes the

proof of Theorem 1.

The passage from M(Rn“l) to 0O(n,l) means a loss of two
dimensions. For instance, the classical Mdbius group M(C} is repre-
sented by the Lorentz group of 4x4 matrices. For practical purposes

this is much too complicated, but for theoretical reasons it is impor-

tant to know that every M(Rn) can be written as a matrix group.
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IV, Flements of differential geomelry.

L,1. T want to take a very unsophisticated look at differential geometry and
regard it simply as a set of rules for changing coordinates.
A differentiable n-manifoid 1s a selt covered by coordinate patches such

that overlapping parts are connected by coordinate changes of the form

{1) Ei :'ii(xl_"" ,xn) , 1i=1,...,0 .

The change of coordinates shall be reversible, and this means that the Jaccobian

matrix

is non~singular. The coordinate changes will always be Cw

The typical contravariant vector ig a differential

[—

i
(2) & =T st A .
3

Observe that we are using upper indices for the differentials, but not for
the variables.
An arbitrary contravariant vector is a gystem of vector-valued functions,

one Tor each coordinate system, ccnnected by the same relation ag in (2),

namely
P,
(3) & = gf 2’
dJ

where we are using the summation convention, as always from now omn.

Similarly, a covariant vector is typified by a derivabtive (or gradient)




AX
of _ of 73
(%) 3%, dx. 3%

. o,
(5) b.=b5-}-;1 .

The idea carries over to tensorg of higher order. Here are the rules for

contravariant, covarlant and mixed tensors of second order:

TR
' oK axk

. ax [iks
a,

- _ oy B .
] 3x kB
h 3

It makes sense Lo speak of symmetric and skew-gymmetric tensors, for if
ahk = aﬂh , then ) = It
The Kronecker 6; is a mixed tensor with the same components in all

cocrdinate systems. In fact,

5. BXi éh axk _ axi a;h _
J Bxh k axj BXh azj J
3%, oK,
because the matriceas —%  ana s are inverses.
axj A%,

h.2. An important way to form new tensors is by contraction. Example: 1F

koo, . . .
aij ig a twice covariant and once contravariant tensor, then

a, = a., (surmation! )



is & covariant vector, for

- B
—i ) E{i " BXK aXh T k
iy o, “wn X, X,

g
i

h.3. A differentiable manitold becomes & Riemannian spPace by Tthe choice of a
metric bensor whose mabrix is pogltive definite. It serves séveral purposes:
1. T+ defines arc length and volume.
2. Tt servesg to push indices up and down.
3. Tt defines covariant differentiation.
L. Tt defines parallel displacement.

hre length is defined by setting
1

M

— i J
= -
ds (g,ad:x ax )

and defining the length of an arc Y by’

Mv) = [as .
Y

Because gij i1s covariant of order two and the differentials dx~ are contra-
variant, ds has a meaning independent . of the local coordinates.

The determinant of gij 315 denoted by g « /8 transforms like a

density in the sense that

this follows by the determinant miltiplication rule. This defines an invariant

volume by

.
V= f o B dx"...dxn



L

(we consider only sense preserving changes of coordinates.)

b, The inverse of the matrix gij is denoted by glJ « It is clearly a

contravariant ftensor of order two. Multiplication with g4 OF glJ followed

J

by contraction pughes indices up and down. For instance

The mixed components of gﬁj are

Y

L.5. The gradient %E% of a scalar function is a covariaat vector. For
other tensors differeﬂiiation of the components does not by itself lead to a
new tensor. It nag to be replaced by covariant differentiation, which we pro-
ceed to define.

The Christoffel symbols are

agik Bg.k 3.

=1 gk 7Ag
(6) Dsx = 20m 5 - 5
J i k
and
_ bk
(7} T';lj =8 Ty

In order to Tind ocut how they transform we start from
™
— a

g.. 78 =
iJ ab axi axj

o

and differentiate using the chain rule



w—

3. . ) agab Bxa axb axc
Bxk axc axi axj axk

) X, oxb 3 X

[a—

K

+
Ban ( axiaxk

where we have interchanged a ,b
Permutation of the gsubscripts leads to

Bxa Bxb Bxc

b
+
3% . aX 8%, DX, )
J gk i

in the last term.

>3
&

b

is not a tensor.

(8] r.. = . + g OSUUUSIVREN. - S
ij,k ab,c Bxi axj axk ab axiaxj 0%y,
The extra term on the righit shows that Fij 1
2
Multiply both sides of (8) by
JE Oy B g
axd X, *
This glves
— — o—
. — 3 3 B 5
(9) R - i S W
ij ab  aw, dx, X A%, 9, X
i J d i3 d
Again, there is an extra term. o

We use (9) to find the mixed derivatives
5££
multiply (9} by SEE to obtain

o _ — —_
3 R
(20) X _ BX_K R Xa a}:b
Bxiaxj ij axh ab Bxi axj
L,6, If VJ is a contravariant vector we sghall show that
: 3
J v’ k
i1 = e b T
(1) gk'v Hx ik v

.

For that purpose



ig a mixed tensor. TFrom

—

. 3,
Woe ol P

o5

we obtain

. = 2__
Avd _ avh axk axj . f6) Xj axk no
oy g O% D4 ogoR 3%
Use (10} to eliminate the cross-derivative:
BTTJ _ BVh a}(k BX‘j . (ra an ) "];Eu aXa aXb ) an vh
axi axk Bii Bxh hk ax, ab axh axk ‘ axi
The very last term simplifies to Tii:;a’ . We pull it over to the left hand

gide which becomes

avi , 3 —a =
+ = Vv
oK, i ¥ v

On the right we are left with

h 3% A%, . B
oV iy 1 k& op
ax. X, Ax hk B#x o

is L h a i

Interchange h and & in the second fterm. Il becones

h 3% Ox.

+ pne
axi axh

( oxk Tak

and we have ghown that

. 3 3% .
v, v = Vkvh Eik" ._5*51
+ “y O,

which iz the rule Tor a mixed ftensor.
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The formula for the covariant derivative of a covariant vector is similar:

Bu, a
V.u, = —< - T u .
i axi ij a

We skip the invariance proof.

The general rule is to add one term for each contravariant index and

subtract cne term for each covariant index.

Example;
k
av. .
Jiy ij o, oEoLe a k a _h
— B — — v
o Vi5 T T, Ma Vi3~ Tin Va; ~ Ui Yar

One verifies that the covariant differentiation of a product feollows the usual

rules. Another practical rule is that the metric tensors gij s B > 8

pehave like constants. For instance

og, .
e A - =
Vi By T T, Tei a3 = Tkj Bip
38
—_—d .7 - T =0
an kl;J KJ)J‘
Tt ig customary to write Vk = gkilvh .
L.7. If T is a scalar, then
v, 9.f = v L = 3 & 88
k] k an ijaxk Jkoax,

is gymmetric in J and k , so that



For other tensors this 1s no longer

a covariant vector one obtalas

LE

true. For instance, coperating on

=1
- = R
(vkvj vjvk)vi 13k v,
where R?jk is a tensor, the curvature tensor of the metric gij It is
given by the somewhat complicated formula
n
ar”, AT
. h ki Ji a _h a
o = - + - r
(12) R 3k B B, Tes Tag = Yi1 l—lallc

We make no atbempt to carry oub the computation. Contraction with respect to

h and Xk leads to the Ricci curvature

(13) R.. = R

(1) R =g =g¥x

4.8. Vectors and tensorg are sithbing in the tangent space atiached to each

point of a differentiable manifold, but
vectors and tensors at different points.
or connection, serves this purpose. We

krnown ag the Riemannian connectlon.

Tet x = x(t) represent an arc v
[a5]
tensor 8;4 5 We assume that =(t) €C

at x(t)

there is no automatic way of comparing

The notion of parallel displacement,

shall use only the simplest connection,

in a Riemannian space with the metric

let E{t) be a contravariant vector
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Definition. We say that g(t) remains parallel along v if
i 1
(15) St B () = 0
for all t .

More explicitly, {(15) reads

i : daes
(16) %{4— EZ‘]-EJ Tbk: 0

or
i i :
(17) 2t T kggj = 0
at k) gt
This 1s & system of first order linear differential equations. Beczuse

the réj and the d%k are C® it has a unique solution with given initial
values gl(t ). Indgther words, any vector g(to) determines a vector

g{t) obtained by parallel displacement alongly .

L.9. The length of a vector £ , measured in the Riemannian metric, is

., 2

_ Ld
ey ? = GE e )

Similarly, the angle between two vectors g-m is given by
_ 13
<§"ﬂ\ - ?gl,j g Ti
1d

cos 6 = LEsm)

(§:5)1/2 (n.m)1/2

Theorem. The inner product ¢E,7) , and hence length and angle, remain

constant under paraliel displacement.

The proof is a straight forward computation msking use of (16) and the
identity

- bg. .
Tei,jg © Tyy,i = ——id

¥
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h.io.

Definition. An arc x{t) , 0£t < to , is a geodesic 1f the tangent vector
: dx,

%'(4) remains parzllel to itself. If we put eh = ~a;% in (16) we obtain

the condition

2 ,
Xi i dxk | ~
(18) Lo+ T, = ope =0
at k3 dt dt

for x{t) to be a geodesic.

Tt ig not only the shape of the arc but also the parametrization that
makes =n are geodsglc. By the theorem the length of x'(t) ‘remains constant
along a geodesic. If we replace the parameter + by T , the length would be

+

multiplied by %ﬁ and would no longer be constant unless the change were
lingar: + =at+ b .

We can regerd (18) as a system of differential eguations for the functions
Xi(t) . According to the general theory we can prescribe the initial values
xi(o) and the initial derivatives xi(o) . In other words, there is a geodesic
from every point in every directicon. We may even normalize so that the tangent
vector has length one, in which case T becomes arc length, usually denoted
by =

The existence theorem produces x(t) only in some small interval [O,to) R
but we can shart anew from the polnt x(toj . Thus a geodesic can be conbinued
forever uniess it "tends to the ideal boundary".

A geodesic arc 1s, at least locally, the shortest arc between its end

points. Thisg is proved in caleulus of variations.

.11. We shall now apply these notions of differential geometry to the unit

hall IBI1 with the Poincaré metric
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(19) ds = S

We are in the unusual situation where we can use the same cocrdinate system
in the whole space B , hamely by identifying each point x€B with its
coordiinates (x) , ... ,x ) . Any diffeomorphism of 3% would lead to
another coordinate system, but we choose to consider only coordinate changes

of the form
{20) X = vX

1
where vYE€M(B") . This means that we are interested in the conformal structure

of B
The metric (19) corresponds to the metric tensor
(21) - ugij i - {i-~|x 2y2 5
843 (l-—|x|2)2 > & I 1]

A 1little more generally we conslder an arbitrary conformal metric
ds® = p

and have then

(in this connection Bij is an element of the unit matrix and not a tensor.)
We wish to compute the curvature tensor. It is convenient to use the
notation

2u _ ¥u

w = lOg g ui S > iy axiax‘]‘

|
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One obtains

ag13
S TR
Kk
r = p2(5 u, + 9 - 8 )
13,k ik 3 3k i iy "k

= -+ ~
ax Bn Pk Oyn Pik % 5 %

j=x}
it

e A LIRS S o)
o sluy ) - & (g, - oy )

2
(058~ E’ikah;j”w|

R =8 M1+ (n-2)(u . ~uu + 5 . |%w|%)
1] 1] ij ij 1]

For the Poincaré metric

2
u=logp = log? - log{l- |x|7)

2%
'Ll. p— \—--0-—-—-]—;0—0—
oo
28, . hx x,
- ij + i ]
Y4 5 > EINE
1- x| (L= [x|7)

| |2 _ LL|X|2
(1-|x[?)°



h L
R, = ————x5 8., - 5.8 )
ijk (1 IXIE)E (ahk ij lkahj

-

Brise E (Belis = B5fhs) = B85y - 858y

(1- I
Lin-1)s
Ao = 2
SN
R = giJR = n{n~-1)
iJ ‘
The scalar curvature is constant, but not = -1 . However, the formula for

[

Rhijk ghows that the sectional curvature is constantly equal to -1 .

4.12. The Beltrami parameter

There are three important invariant differential operators which generalize

the gradient, the divergence and the Laplacian.

a) The gradient maps functions on vectors. If f iz & gcalar

v‘f = _\—af_.
1 o,
3

is a covariant vector. The corresponding contravariani vector is

Vf = V‘_E' :glJ.E_. .
3 an

The sguare length can be written either ag a dot product Vlf . Vif

1p gde = 33 -
g3, VIV =g v, L V.S

- glJ af  of

[S—

2
(22] IVfI B 9%, o=,
i J

1,3

This is the first Beltrami parameter and it used to be called Vlf_. It

obviously generalizes the sguare of the gradient.

or as

3
See L.P. Eisenhart: Riemannian Geometry, FPrinceton University Press,

19560, .81, (25.9).
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b)  The divergence leads from vectors to scalars. If v 1s a vector-

valued function we define

- . . Lo i
(22) divv v, v Vv,
These ewpressions are identical for glJ behaves like a constant and we
cbtain
- 5 .
v.v o= v.g v, = g vv. v, = Vv
i J i 3
From
; J
J = ..@E._. + rd kK
ViV 5%, | tik
1
we have
- i Bvi i Lk
2l yho= vt
(%) Vi 3x, ik

There is a simple formula Tor Fik . By the well xnown rule for differentia-
tion, of a determinant.

3 -1 2g ij %853
~— logg = tr (g ) = g

axk axk BXK
Buat
g, .
Moo= 4T
Bxk ki, g kj,1i
and hence
.. B, . .
i i - 1d - J .
€ ax Lk, & i.d 4
oX, 1,J k(]}l 1
and thus
i o) 1 3
@5) Ty = 5 log g = = =~ /g



22

From (24) and (25) we get

(\/Evi)-

(26) . divwy =

L3
N/ér Bxi

c) When both operators are combined we obtain the second Beltrami

parameter
- - . 103 ij of
(27) AT = divgradf = = (/g &' =)

\/—? oy ]
Thig is a direct generalization of the Iaplacian and it is freguently
referred to as the Laplace-Beltrami operator.
Its importance lieg in the fact that it ils independent of the local
coordinates. For instance, if f is defined on Bn and if we use the

Poincaré metric, then for veEM(E) R

(28) a(fov) = (8,f)oy .

For short, a sclution of ﬂgf =0 on B will be called hyperbolically
harmonic {(h-h) . We see from @4 ) that if f is h-h , so'ls fovy
This is not true for crdinary harmonic functions, except, as we shall gee,
when n =2 .

On a Riemannian space a solubtion of Agf will be called harmonic since

this does not make sense in any other meaning.

Y.13. We compute Agf for a conformal metric ds = pldx[ . One gets gimply

n-2 ar
X,
1

(29) LE=e " 5 (o )
1
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P
‘Tn the special case p = 7 one Tinds

1~ lx[g

2.2
_ (1-4x [ &% + 2(n~22! x, _%.B;?]

(30) £
: T
With the customary notation |x| ==
- SR 1
i O, or
1
2.2
_ (L-x ) 2{n-2) af
{31) | L [ af + 2 roa |
1
Tor the half-space p = and,
o
- 2 1 of
2 = - - DR
(32} AT xn[f_\.f (n-2) 5 3¢
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V. Hyperharmcnic functions

5.1. We shall now gtudy hyperharmonic functions on BY . our firet task
will be to find all sclutions wu(x) of Au = O that depend only on r = fx| .

For a function u(r) one obtains

ili- = ul(r)f.j;

O, r
321,1 XlXJ Bij xli
S = wle) Sl v w2 L
1 r r

and thus

According to equation (32) in 4.313 wu{r) will satisfy

u'(r)

2{n-2)
l-r

+

(1) u'(z) + (a-1) rut(r) = 0

If u'(r) # O this can be writiten as

u'(r)  (n-1) ., 2(n-2)r _
ut{r) " " L2 0
or

a%- [ logu'(x) + (n-1) logr - (n-2) log(l~r2) =0

from which we conclude that

rﬂ-l
ut(r) ——=—gy~——5 = const.

(1-r7)

This leads to the general solution

2. n-

r 2
(2) u(r) = a [ % dt + b
t



We see at once that no solution can stay finite for r = 0. hs a

normalized solutlion we introduce

1 2.n-2

o fr-t)
(3) g(r) J AT dt

¥ L
1 2
For h=2 gl{r) = log'% . For n>2 g(r)ﬂJ-Efg T N por » -0 and
1 2 1
g{ry = o{{1-r)" ) for r -1 For n=3 glz)=(/r - ——) =g T 2 .
A

n
5.2. Together with g(r) any gﬂyxl) with vEM{B) is again h-h,
becauge by (29) in k.13 ¥ commites with the Taplace-Beltrami operator. In

particular

(W) g(x,y) = g(\TyKl) = .%.;;]L

has a sgingularity at ¥ and will be regarded as the Green's function with

pole at ¥y -

5.3. The fact that a h-h function that depends only on r 1s either a
constant or hag a rather strong singularity suggests £hat any igolated
singularity of a h-h funeticn should be equally strong. In function theory
we are vged to study such questions by use of integral formulas, especially
Cauchy's integral formule and For ordinary harmonic functions Green's formula.
For h-h functions there.are two ways of approaching the guestiomn.
Either one can derive Green's formila in the general setting of Riemannian
spaces or, in the hyperbolic case, one can apply the classical Green's formula
to suitably chosen functlons that are naturally conpected with the hyperbolic

metric.



59

We shall use both methods, bubt we begin with the second which is by

far the simplest.

5.4, Ag a preparation it is ugeful to collect a few facts about multivle
integrals especially these connected with spheres.

Becall Fuler's [ - function and 2 - function

a-1 -%

(5) rfa) = [t e dt , Re a > O
0
1 a~1 -1
(6) B(a,b) = [t "(1-t)  “dt , Re s >0, Re b>0
o

They are closely related. The gubstitution © = X2 gives

® a1l %"
(7) r(a) = 2 ¥~ e ax

9]

. . 2 . .
and t = sin @ in B{a,b) gives
m/é
. 2a-1 2b-

(8) B{a,b) = 2 I sin”" p CO8 b-1 pdo

G

From (7)

@ P 2
up X2a—ly2b-l e—-(x +y )

r(a)T(b) = & | dx dy
0o 0
and in polar coordinates
© on42p-1 -ro W2 e 2b-1
ra) (o)=Lt [ r e ar [ cosT Tgosin | odo
© )
= I'(a+Db) B(a,b)
and thus
(9) B(a,b) = L)

T(a+b)
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In particular, since B( % s % )

]
=Y
&
a
=8
~

—_—

i_l

o
I
i._l

it
B

(10) (s

We shall denote the "surface area” or (n- 1)~ dimensional euclidean

-1 -
measure of g by ) (some authors prefer o 4 ). The area of g l(r)
. n-1 n .
is then o gq ¥ and the volume of B (r) 1s
' . n-1 | w{l n
v (r) = j‘ w r dr = —— Y .
n o & n

To compute the area of a spherical cap of radius @ (measured along the

unit sphere) we project on the equatorial plane X = 0 and note that the area

element on the sphere is

dao =

Fig. 11

The area of the cap 1is thus

gin g rn—2
Alg) = ®, 1 Io — &

n
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With r = gin & , dr = cos 648 x = cos 9 we find

(11) | Ale) =mn_lj gin ©gag .
]
In parficular,
ﬁ/?
- . _ , h-2
w, 2A(2 ) Emnml‘% sin gdo
and thus
n-1 1
“n sl 1y . r(=5=)riz)
2 »
©p1 = r (%)

. n 1.-n . _ .
This makes w T (E-)I‘(E-) independent of n and since w, = en it
fellows that

~ Eﬂn/?
(12) W=
reg)

For comparison we shall also compute the area of a sphere and volume of
a ball in hyperbolic space. HRecall that a hyperbolic radius 8§ corregponds
to the euclidean radiuvus r = tanh.% of a ball with center © . The n.e.

area of the sphere is then

2n-lrn—l ~ a1
Yo el et s
(1L-x7) |
and the volume 1=
s n-1
{13) v, (s) = w, f sinh™ T4 dt
- O

(Vh stands for n.e. volume). The formula is thus the same as before with

sinh instead of sin and of course n+i in the place of n .,
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5.5 We return to h-h funetions. Recall the claszical Green's formula

(1) f u prdx = J‘ v gy - f (vu - vv)dx
D o O D
Here D 1s a region in Iﬁl , dx = dxl . dxﬂ s -§% is the derivative in

the direction of the outer normal of the smeoth boundary 2dp and. (Vu v
i3 the inner product of the gradients.

Let us now assume that p lles in _'Bn . We shall replace everything by
its hyperbolic counterpart, using the following notationg: for the hyperbeiic

n

volume element: dxh = 2 (ﬂé
n
(1- =7
n-1
the aresa element: dg =~ I
h 2.n-1
(x- 2]
Z2
tha normal derivative: 0¥, - l-—|x| &Y
bﬂh 2 bn
1-]x 2
the gradient: thA = 5 vu
the TIaplacian: Ahv = Agv .
With these notationg we claim that
Iemma 1:
DV
(35) PuAvdx = w2 dg, - [ (Vu-v,v)d .
| e %D T A A M
1t ig easy to check that this is exactly the same as (1%) with u replaced by
— -2 2.2
w o= 2" (1-1{=]|7) %4 . As customary, one can eliminate the "Dirichlet integral"



on the right by interchanging u and v and subtracting. The reguliing formula

— AV Hu
(16} (u A v - vA u) = (0=~ - v =—)dg
]-)f Ah Ah dxh I D oy o0y, h
is the one in most comnon use.
The special case v = 1 leads to
. Bu
(17) f udx = j‘ << 4z
ﬁ Ah >D bnh h

and it shows azbove al:i that an h-h function has vanishing flux

B
(18) JP —_ e = 0 .
D bnh h

In euclidean terme (18) reads

.g}_l. dg =3 O
o 2 n-2 *
ap O (1- |x|7)"

| L %)
If D = B{r} we obtain

j —g—% dg = 0O
s (r)
In other words, the mean value
m{r) = L JP widg
w
a g(r)

is constant. In particular, if w is h~h in a full neighborhocd of the

origin, then

(20) u{ Q) = m,}_ f( ) udg
n “glr

63

*) From now on n will be fixed and we write B for B” and 8 for
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for all sufficiently small r . This is the mean-value property. The mean-
value can also be taken with respect to volume, and because of the rotational
symmetry it does not matter whether we use euclidean or non-euclidean measure.

However, the n.e. average ig invariant and we obtain:

Temma. The value of a h-h function at the center of a n.e. gphere or hall

is equal to the n.e. average.

Remark. The mean-value formula can also be proved without any computaticn

whatsoever. 1In fact, 1t is possible to write

n{{x|) = I u(kx)dk

o(n)
where dk is the Haar measure of ((n) . Because u(kx) is h-h fFfor every
k it follows that m(|x|) is & h-h Ffunction which depends only on |X|‘
and hence must ve a constant. As a result of the mean-value property h-h
functions satisfy the maximum-minimuim principle:

A non-constant h-h funetion cannot have a relative maximum or minimum
oIl an open connected set.

The proof is the same ag for n = 2 .
5.6. The guestion of removable singularities has the fellowing answer;

Theorem. Suppose that DeB is open and a €D, If u{x) is h-h in

D\ {a) ama irf
. n-2 .
limu(x) |z-a| =0 if n>2
XA

limu(x) — L -6 if n

1
XA 1
o8 X-a

2 k)



+then Ut has an h-h extension to D .

Proof; Without loss of generality we may assume that a = 0 and D

1l

B(p) 3
6 > 0. We choose a fixed y€B(p) , vy # O and apply Lemma 1 to u = u(x) ,
v = g{x,y) in the region B(p) \ (B{r) UB{y,r)) withr < min (|y|,p- |¥|) -

Since Ahu = ahv = (0 we cbtain

1) f (u(x) BB | g(x,y) bg(nhx) .) dg, (x) = 0

s{p)+s(r) +8(y,r)

We look for the limit as r-+0 and start by considering the integral

S(y,r) . It is evident that the integral of the second term will tend to O,

for g(x,y) = 0( )y (er 0O(log % 1) while éﬂi is bounded and doy,

n-2
containg the factor rn*l . The integral of the first term can be written as
2.2-n pE{ X n=1
(22) R C R P b S
lx-y| =x

1y,

where dw is the element of "solid angle" (or the measure on g™

We recall that g(x,y) = g(.l‘]]yxl) and ]Tyx] = M]L 8o that

[x, ¥
_delEy) . g (1 x]) Elfifl =
or ¥ or
(2= |z ™)™ b
: ]Tyx| Fe 1og]TyX| =

[Tyx}n-l

2 2 n-2 n-2
( (l~'IX| )Cé“|§1 )) (%ﬁf%%) el logig&xi

(x,5] o
o 2, n-2 -
= ( (-] ]xiéﬁi‘IYi )) ﬁi2 é% logli&x|

T
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Here [&y]ﬂ\l-lﬂg as x-y and

rviL log[Tyx| = r‘il leg -+ 1.

X
or oA [x,y]

It follows at once that (22) tends to uﬂlu(y) .
We have now Lo investigate the part of (21) that refers to 8(r) . We

make first the observation that by Green's formula the integral

Fa)t]
(23) [, 06 L~ ) ) dg, =)

is in fact independent of r and hence defined for all v €B(p) \ {0} .

Morecver, because g(x,y) = g{y,x) it is:evidently 2 h-h function of

¥ - We wish to show that the boundedness condition of Theorem 1 makes it
identically zero.

et ug rewrite (23) as

n-1
d ]
@) e |GG DELEET)  g(rg,y) HLBL ) qy(e)
lw-r St
Obscrve that g and %% remain bounded when ¥ — O . Hence the condition

n-z
u(x)|x| — 0 makeg the limit of the first term zero.

For the second term we write

uw(r) = [ g(rg,y) %%Q dos ()

s(1)
and obtain
2r 2r
dl’ p(t)dt = d[’ de F g(t8,y) —bll-%%;id.t
r 8(1) r

2r 2r "
. [g(tg,y—) w(8) | - [ u(eg) 8L dt} ()
Y a1 o}

r r
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This is of the order of 5&2 ) . Hence there is a t Dbetween r and 2r
i ' -1
with p(t) = of ﬁi]_) and since Limr' w(r) existe it must be zero.

We can now conclude from (21) that

_ 08 (%, u
ay) - =L ] () L - o) ) a

The »ight hand side is a h-h function in S(p) and defines the desired

h
n

extension of u

5.7+ Boundary wvalues. If 1w is h-h in B and hasg a continuous extension

to the closure B , then the mean value property implies

(25) w(e) = = [ u(xa .

We obtain a more general formula if we apply (25) to ugY where YEEM{Bn) .

Tndeed, uoY 18 again h-h and extends continuously to the boundary. IHence

(26) a(yo) = o= fulym) )
n -

S

T;l Tor a fixed y&€B . Because T;lo =y we get

i

We specialize to ¥

uy) = 2 [l xax)
Il

S

and replace ® hy Tyx in the ilategral. This leads to

wr) = 3 [ B0 160 1" aste)
or explicitly
2 n-1
(27) o) = = 1 AT L
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where we have uzed the simplification [x,y] = lx—-‘y[ when IXI =1.
This is the Poisson formula for the ball. Note that the kernel is Just

the (n-1l)st power of the Poisson kernel for n = 2 .

5.8, We ghall use the notation

with the undersgtanding that |x| =1 and |y| <1 . Formula (27) lets us
suspect that k(x,y) is always a h-h function of ¥ .
The direct verification of this is not difficuillt, bubt it is much guicker

to pass to the half-space Hn . IRecall that the laplacian for the half space

is
_ .2 n-2 o)
Ahdxn(e'"x bx)
n n

it follows without computaticn that

[0 O
= -n+
a, % c{la-n+i)x

O . . n-1
Thus every x, is an eigen~Tunction and X iz h-h .

We recall (see 3.5) that the cancnical mapping BEL - Hn is such that

2
1~

S P
yIl

3

n n c
where x€H , y€B . We conclude that k (en s ¥) is an eigenfunction of

Ah for B and that k(en,y)n_l is h-h . Given any xESnﬂl (apologies

for using x twiee) there exists a rotation B such that fx =e , BRut it
n
-1
is obvious that k(x,y) = .k(Ben ,¥) = l&:(eIl , By) . Because of the invariance

we conclude that
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(28) b, k0% = oo nr 1) kxy)”

and %ﬂk(x,y)n—l= o .

5.9. Suppose now that f(x) is of class Ll(S) , 1l.e.

f E)aw(z) < e
S

Then we can form

(29) wy) = = [ Ry s
: n Sn—l

which is obvicusly a-h .
Theorem. u(y) has radial limits f(x) a.e.

Proof. It is known that

Foe(x)an(x)

(30) 1 2LE22) = £(g)
50 j din(x)
B(E, 5)

for a.e. EE€S (see e.g. Rudin, Real and Complex Analysis, Thm. 8.8). We
shsll prove that u(rg) - £{€) for r -1 whenever (30) is fulfilled. We

may assume that § = &, 80 that
1 n-1
. = = Klx,r .
alre,) = o [ kGeave ) o) dnta)

We introduce the colatitude  defined by x = Cos g and change the notation

of the kernel to
2 n-1

1-r ) .

;
K(T,@) = — (
“h l-2rcosg+ r
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Moreover, we shall write

F(p) = r T (x)dw(x)

X, > cosg
for the integral of I over the polar cap of radius ¢ .« Clearly, the
formule for u(rEﬂ) can be writien in the form
T
(31) vire ) = jﬂo K(z,q) F' () do

where F'(p) exists a.e. and the meagure F '(cp)dcp is absolutely continuous.

Integration by parts yields

n
u(r,en) = K(r, o) Fa) - J; F(ep) ﬁ%%&l dep
We wish to show that u{reﬂ) - f(en) . Without logs of generality we may
assume that f(en) = 0 , for otherwise we need only replace f by f-f(en) .
It is immediate that X and %?I; tend uniformiy to zZero for r -1 in
any interval S <o <w , &> 0 . Hence u(ren) hag the same limit as
o)

ua(r) = _‘E F(Q)-§t K(r,m)d@ .

Because of (30) we can choose & g0 small that

P -
]F((;)I < ehAlw) = ew [ sin™ 29(18 .
. = ‘ -1 !b

It follows that

J

5
K
[ag(e)f < -¢ ;A(@J %’(—P do

for ekt > 0 . Another integration by parts leads to
¢



5
1uauq| < -eA(B)K(B)* ¢ % KA () do
s
< et% Kot (p)dg = ¢ j;K(r,@)@D =g
o

by virtue of the fact that

dr K(I‘,c_p)dr,l) = 1
8

as a speclal casge of the Poisson formulia. We conclude that lﬂnu(ren) =
L

lﬂnuB(r) = 0.

&0

5.10. A little more generally u(y) — f(en) in any "Stolz cone" characterized

by
(32) ly-e | sm(1-1Iv) -
Write y' = |y|en for short. By (32)
-y < lx-y ] v fy-e | * iyt -e ] <
jx~yrl+ iv1)(1- [y]) .
If |x| =1 this gives
x-y| < (M+2)]x-y|
Similarly,

-yl 2 lz-v + ly-e | + [y ~e i < (M+2)|x-y]

E i i, lieg between fixed bounds and we conclude that the
h 2

Henee the ratio

limit of wufy) - f(en) ig also zero when y — e  inside the cone.
‘ n



VI. The geodegic flaw,

6.1. We shall now pass from B = B& 4o its unit tangent space Tl(B) .

The points of Tl(B) consist of 2 point x€B and a direction at that point.

n~1

The direction will be given by a unit vector E¢€S = § Thus Tl{B)

can be identitied with Bx8 , but we prefer to think of it as the space of

directed line elements (x,§) . Because of connecticns with dynamics Tl(B}
is sometimes referred to ag the phase space.
The Mobius group M(Bn) acts in an obvious way on TI(B) . It YGEM(BH)

i1t is ciear that x should be mapped on Y% . At the same time € should
ve transformed by the matrix v'(x) to give the new direction v'(x)E for
the line element at Y:i » but 1n order to cobtain a unit vector we have to
divide by |y'(x)]

Eence we define the action of vy by

N

X

(1) ¥ (%8) » (vx,
v (x) ]

There is an obvious invariant volume element, namely,

(2) dm = dx dw(§) ,

where o(f) denotes the golid angle. 1In fact, the Poincaré metric is invariant
under v and & undergoes a rotation which keeps the spherical measure in-

variant.

6.2. It is of interest to introduce a point-pair invariant for the action (1).

Let (x,§) and (y,M) be two line elements. We claim that
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(3) 3l (x,8) , (y,M] = |- a(x,y)E|

is a sultable invariant.
We observe first that this expression iz symmetrlc. In fact, multiplica-

tion by A(y,x) does not change length and
Aly,z) (M- A(x,y)E) = &(y,x)N-§

by virtue of the identity A(x,y) A{y,x)= I . Thus
[M-20,y)E] = [5- &y,

Mow let ug check the lnvariance. Simultaneous application of v on

(x,€) and (y,T) changes (3) to

(1) | Xl g Ay, yy) —EL g
|v' (¥)| Iy () |

Bub we have proved (see {41} in (2.8)) that

Y"(X) = Vl(Y) ﬁ(X,y)

A{yx , vy)
vy v (vl

Thus (4) becomes

| ﬁ%—' (M= A(y)E)| = |T- Alx,y)E]
YLy

and the invariance is established.

6.3. We ghall now determine the infinitesimal form of {3). In other words,

we want to compute

(5) |E+3E ~ A(x,x+dx)E] .
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Here is the computation:

X-‘Xj
Glx), . = ‘i
Xidxj + X_dxi EXiXJ(XdX)
dalx = -
;( )lJ ‘XIQ IXI}_l_
|
xR :;kdxj + xJ,dxk 2x .xk(xdx)
E3 || |z ]
¥, dx 3. %, (xdx)
S s R Ay
2 I
x| E3
where we made use of the summation .convention.
xjdxi - xidxj
( I-2g(x))dq x], =
(7) [(1-2a(x)) an(x]], e

B, x+dx) = (T-2q(x -x-ax))(T-20(x)) .

Here
2
Q(x%—x~dx) =Q(}~|-;—£~)2—{‘L X - dx)
X
2
= Q(X- —Ji{‘l——g dX)
l~|x|
2
= a0 - —E g
1- x|
and thus
2
A(x ,x+dx) = (T-2q(x) + ~—U-12 |X 7 4.Q0) (1-20()
- |x
2
-1 - 2l gieaeyane Y

1o |x|?

*) TNote that (I-2@)%=1 implies dq (I-2Q)=-(T-20)aQ
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and vy (7)

(8) Alx ,x-#dx)ij = 5,, *

Wow we substitute (8) in {5) to obtain

L(E+a§ - &{x,x+dx)E), =

i

(dx§)x, - (x§)dx,
= aE - 2 i i

2
1= |x]
The infinitesimal dinvariant is hence

(Bdx)x - (Ex)dx |
5
1- x|

(9) lag - 2

An invariant Riemannian metric cn Tl(B) can now be introduced by

{10) ds® = _l*ld_xi% + ldE - 2 (Edx)x - (ng)dx 12
(l-|xl ) 1- IX|

6.4, We shall now define the gecdesic flow which is a one parameter group of

diffeomorphisms Vf of Tl(

B) which satisfy VYV = Vo

Every line element (x,§) determines a geodesic ray which starts from

x 1in the direction E§ . Fix a real nunber t . Iet x move along the
geodesie from = to a point x  at distance + from x ; distances are
counted positive in the direction of the ray, negative in the opposite

direction. At the same time we let the vector £ slide to the positive

tangent vector € at x ; (gee Fig., 15)
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Pig. 12

We define

T 1

(11) V(%8 = (x L8 .

It ig quite evident that stt =¥ and Vﬁl =V _ . Moreover, the

g+t £ -t
construction is clearly invariant with respect to Mobius transformations in

the gense that

(12) V.OY = YoV,

[

for each vYEM(B) .

€.5. The most important property of the V% is that they define a flow in

the sense thait each V£ leaves the volume element dm , defined by (2) ,

invariant. We shall prove the invariance by introducing an other volume element

dm on Tl(B) which is at the same time invariant under Mobius transformations

and. under the transformations Vt .

If dn and do are both invariant under M(B) , then their quotient is

an antomorphic function. But M(B) is transitive in the gense that any line

element {x,§) can be mapped on any other. Bub this means that the ratio

dm : dw  is constant. Since dm  is irvariant under every 'Vt the same is

Tthen true of dm .
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To censtruct dm we introduce & new set of parameters on Tl(B) .
As we have already pointed out every line element (%,8) determines an
oriented geodegic through it. This geodesic has an initial point u arnd a
terminal point v . Clearly, u and v can be caleulated explicitly from

x and E (by a complicated formula).

Conversely, u and v determine the geodesic, but we need stlill another

parameter to Tind the position of x on the geodesic. ILet the midpoint of
the geodesic from u to v be denoted by « = a(u,v] . To locate x we

use the signed non-euclidean distance s from o to x (gee Fig. 16).

g, 13

Tt is now clear that there is & bijective correspondence belween the pairs
(%,8) and the triples (u,v,s) . This correspondence 1s in fact a diffeo-
morphism between BXS5 and SXEXIR

The action of V_ on (u,v,s) is quite obvious: (u,v,s) is replaced

by (u,v,s+t) . As a result the volume slement
dw(w) dw(v) ds

and more generally any element of the form
f(ﬁ;v)dm(u)dw(v}ds

is dinvariant.
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We want to find a dm that is invariant also against all veM(B).

Y moves x to a point yx at distance s from vo and thus to the

directed distance s + d{ya,a{yu,yv) from the midpoint o (yu,yv).

This

means that s 1s invariant up to an added term that depends only on

u and v . Because |yu-yv

follows that

— dwl{u)dw{v)ds

dm =
:2n-2
|u-v|
is invariant with respect to vy . The conclusion is that
am = C;dw{u)dm(v)ds

2n=-2
|u-v|

[21’1"“2= ]Y' (u) |1’1—:|_|Y, (V) |n-—1|u_vi2n-2 it

with constant ¢ . Actually, one shows by suitable specialization that



VII.Discrete Subgroups.

7.1. As Iseen in 2.6 the most general ‘YQM(BHJ is of the form kT
(k€ 80(n),a€B") . Therefore M(B™) can be topologized by 80(n) x B"

A subgroup I'C M{Bn) 1s discrete if the identity I has a neighbourhood
whose intersection with I’ reduces to I . From now on T will always
denote a discrete subgroup.

We know that any 'YGM(BH) which fixes the origin is in 80(n) . Because

80{n) is compact the subgroup of T which stabilizes O 4is a finite subgroup

of SO(H)
The points 0 , €& , are isolated. If not thers would exist an
infinite sequence of distinct 'yn.EI‘ such that V;J'O:an*‘aEB . We know
that 'Yn =P T, with Bné O(n) . By passing to 2 subsequence we may assume
n . _ , _

that 8 __,P and hence v BT . But then vy v lmI vhen m,n - o« which

n n a mn
implies 'vmzyn except for finitely many pairs w,n . This is a contradiction.

We conclude that '\O tends to Sn-l when Y runs through an infinite group I -

It is equally true that Ya fends,to Sn_l for any a&R® . In Ffact,
since d{vya,v) =d(a,b) is a finite constant the n.e. distance from O to
Ya will also tend to infinity.
More generally, if K“B is compact there are only finitely many
Y&€T such that KnyK+d
7.2. Two points a and Ya |, yer » are called equivalent, and one can
pasg to the guotient B/F by ldentification of equivalent points; we
shall denote it by ?t;_(fl’") » It is definitely a Hausdorff space, and for
n=2 and n=2 it is known to be a manifold; for n>3 it is still referred

to as the guotient-manifold, but it probably need not be a manifold.

The difficulty comes from the fixed points. Suppose a is a fixed
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point of ¥ . Then ”Y'(a)l =1 as seen from

[y’ a) B 1

1-lval? 1ofaf?

In other words, a liels on the isometric sphere K(y) (seé 2.9), pro;vided
that a#0 . If a=0 then v€80{n) and the fixed points of ‘y fill some
k - dimensional plane with 0<k<n-2 . Hence an arbitrary vy Tfixes some
k-dimensional geodesic subspace. As ig seen by the above equation we have
fy"(a}[ =0 unifcrmly for all a from any compact set inside BI:L . Therefore
these subspaces tend to the boundary. We conclude that every point in B
hag a neighbourhood which meets only a finite number of these fixed subspaces.
7.3. We adopt the following definition:

Definition: A point b€B is called a limit point of T' if there exists an

Infinite sequence of Y, €T and a point 2€B such +that Y,a -b

The set of 211 limit points of T is the limit set A=A(F) . The
set of accumulation points of T2 is denoted by aa) . Clearly, A=UA(a)

The following is true:

Theorem. A=A{a) for 211 a€B (with a few trivial exceptions).

Proof. If a,b€B it is trivial that A(a) =A(b) because the distance
d{ya, vb) =d(a,b) is fixed. In particular A{a) = A(0O)

Consider now the case a€8 . We shall assume that Ta#{a] s l.e.

& is not a fixed point for the whole group. There is then a b ='Yoa;éa ,

Vo ET
1) We prove first that A(0)cA(a) . For this purpose let ¢ be an
interior point of the geodesic {a,b) . We know that Ale) = plo) . For

every e€A{o) there is thus
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Fig. 1k

a sequence of .Yv €T with Y,c—~e . We can pass to a subsequence for which
Y,a and 4va converge to limits a' and b' . If a'=b"' 1t ig clear that
e=a' . On the other hand, if a'#b' the Y,c must tend to the geodesic
(a',b') "but also to S , and hence either to a' or b' . Becauge b::YOa
both é' and b' belong to A{a) . Thus e€i{a) and we have proved that
A{o) o ala)

2}  For the opposite conclusion choose an arbitrary d€A(a) and a sequence
{Y,] such that vY,a-d while Y, Owe and Y, ~'0we' . Recall that K(Y),
Ely), I(y) are characterized by vz} =1 , Iy (x)<i and |y'(x)|>1
(see 2.9). Because C)EEKYv) its image v 0 lies in I(vvnl) and YU-lO

lies in I(y ) . Tt follows that I(yv"l)

tends te e and I(Yv) to el

It a4ée' then aGZE(yv) for large v and hence yvaEZi(Yv_l)=ﬂe s
i.e. d=ethfo) . But if a=e'€pfo) then Y 2€A(0) bacause Y A(0) =4(0)
But A{0) 1is closed and we find again that d€A{0) . Since d was an
arbitrary point in Ala) we have proved that Ala)cA(0)

The proof fails when .a 13 a fixed point for all of T . There are at
most two such points and all such groups can be cliasaified {the elementary
groups) . |
7.4. We list the following properties of A

1.)] A 1is closed because A(O) is closed. The complement 0 =5\ Ao is

open and 1s called the set of discontinuity.
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2.) A is invariant under I , ard every invariant closed set contains
A
3.) Either A=8 or A 1s nowhere dense on 8 . T©' is said to be of
the first kind if A=8 , otherwise of the second kind.
%.) A has no isolated points; it is a perfect set.
5.) TLet A and B be compact sets in Q . Then A meets only a finite
number of yB,yzIr

The proofs of these statements are all very easy and are left to the
reader.
7-5. Assume that the identity is the only element of "N80(n); in other
words, O is not a fixed point. Then every YETNI has an isometric
sphere K(Y) with corresponding E(Y) and I{Y}) . In what foliows these
notations will refer only to the part contained in B . Thus K(Y) is
& non-euclideon hyperplane, and FE(y) , I{y) are hyperbolic half-spaces.

We shall consider the set

P=n E(v)
YEr\I

and prove that it has the following properties:

(i) P is open

(i1) »P<U K(Y) (here »P is the boundary in B ).

{(iii) every x€B is equivalent to either a single point in P or to

at least one and at most finitely many points on »P

{i) and (ii) follow from the fact that every intersection PNB(r) is

auﬁomatically contained in all but a finite member of the E(Y) and is fhus a
finite intersection.
Recall that K(y),E(y) and I(y) are characterized by [vy'(x)|= 1,
Iy'(x)] <1 and |y'(x)| > 1 <respectively, and that |Y‘(x)|/(1—lyx[2)

= 1/(1-|x|%).



It follows that =x€E(y) is equivalent to }Yx|:>[x[ while 'YxﬂzszJ

if and only if XWEK{y) . In other words, a point is in P if and only if

1t is strictly closer to O than all its images, and it lies on pP 1if there
are several closest points (including the case of a closest Fixed point). Since
the points in an orbif are isolated the existence of at least one and at most
Tinitely many closest points is obvious, and property (iii) Follows. Observe
the rather remarksble fact that equivalent points on »aP are all equidistant
from O

Property (iii} characterizes P as a fundamental set. As an intersection

of half-spaces it is convex in the n.e. sense. P is g .e. polyhedron and

it 1g referred to as the Poincare'(or Dirichlet) fundamental polyhedron of I

with respect to the origin. The faces of P are the (n-1) -dimensional
intersections »PNEK(y) . The faces on K(y) and K(Y_l) are equivalent
and congruent in the euclidean and non-euclidean sensge.

T.6. Convergence and divergence. We are interested to know how fast the

points in an orbit tend to S or, which iz the same thing , how fast
the orbits tend to infinity in the hyperbolic sense.
The first observation is that any two orbits Ta and TI'b are comparsble

in the sense that the ratios
L-[y 2/

l—'\(bl

lie between finite limits.

In fact, from d{¥a,¥Yb)=a(a,b) it follows that

d(0,¥b) < a(0,va) +d(a,b)



or

log };iile_ < log };&LIQL + d{a,b)

14yb| - 1“]Y&[

| d{a,b) '
1+]yp] < e L+ Iyal
L-lyp| 7 L - [va

from which we deduce that

for all ¥

A good way to study the density of an orbit is to investigate the divergence

or convergence of series of the form

7 o{1- 'lfya, )Cﬂ
YET

for different powers «

We prove first:

Lemma 1. Every discrete group T satisfies

n o(1- V'yaf )a‘(m
vET

all a>n-1

Proof. It is sufficient to consider the case a=0

denotes the Poincare rolykedron of T

Beeause ¢ >n-1

jﬂ (1. ]x]g)a—nd_x:c<m
B

Since B=U.yP up Lo a null-set

As before,

P

&l



2.\0- e '
c=p [ (=[x Tax =z [ (- [y ) Tax
YETYP 'Y,P
. - =1
As usual we write v O0=a . Then

and

(1-]al®)(1-[x]%)

2 2 .
(T - [yx]) = (1= 7 x[7) = 3
[x,a]
This leads to
24 Y= 2.0
I U 3 b M € S Y B .
C =73
i [x,a]ea
ver P
2 2 2
Here [x,a]<2 as seen from [x,al"= 1+ |x|7|al” -2xa<h
Therefore we obtaln
2 20
(2) 5 (1-al)e=—= o .
Yer P15 ax
F

and the Lemma is proved.
Observe that (2) even gives a computable upper bound for the series.

Moreover, because
2 2
Lo fyx ™ = (1= = [Ty ()]

we conclude that
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7-7- For C=n-1 the series may or may not converge, and accordingly the group

T is gaid to be of convergence type or divergence type. There is a nice

geometric characterization of the two types.

Congider the orbit of a ball BO » Tor instance one that is so small
that the images YIBD are disjoint.
Let a %be the n.e. cepter ana p the n.e. radius of BO - For present and
future use we shall determine the euclidean radius and center of B0

The diametrically opposite points of Bo on the line from O throush

a are at the {signed) euclidean distances

la[-kth £
tan h 1 (log 1+ sl +p = f 2
2 1-Ja 1+]altnl
- 2
from O . By use of thege expressions we see that the euclidean radius is
]af+th% fal-th%
r=1 —— _ N
5 e
= 1 £ 1. g
| +fafth2 la th &

and that the center c¢ is given by

al (1- n2 £
(5) 'fc’= ’ P (1- oK 2)

AR
1-Jal® thf%
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As |al -1 we see from (L) that r behaves asymptotically like a
constant times (1-|a|l) and the surface area of B, behaves like a constant
times {1~ [a’)n“l

_We conclude:

" 1= of convergence type 1f and only if the sum of the surface areas

of the ~ B is Tinite.
Z= o S TTInns

Instead of looking at the areas of the BO one can also look at the
areas of their central projections or "shadows" on 8(1)
7.8. Recall that 1 1is said to be of the second kind if 8\ p 1is not
erpty. We prove now:

Lemma 2. IEvery group of the second kind is of convergence type.

Procf. There exists a spherical cap C with Ec:Q . Because ¢ 1s compact
C meets only a finite mumber of ~¢ . It follows that
- n.1
(6) b r[ y'(x)' Ao(x) < e .
Y og

With the usual notation y—10=:a we know that

2 2
(7) IS > 1 -l

[.Y.,a]2 U

£ ey I'l-j_
From (6} and (7) we conclude at once that 3 (1-|al) < w
a =0

7.9. The type of a group I is closely related to the existence of a
Green's functicn on m(TD . Any funetion on wﬁﬁ)"can be viewed as the
projection of a function on B which is automorphic With'respect to T

The Green's function on (1) with pole at the projection of x is defined

to be the projection of a funection gta(x) with the following properties?l
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1 g is h-h for x:eB\\rxo
o ' :
2 i t hic: () =
g. 1s automorghic gf(YYJ gr(x)
3% 1im (g (x} —g(x,xo}) = exists
X=X '

1° gr is the smallest Positive function with these properties.

For simplicity we specialize +to the case xo==0 . The function on
m (r) which corresponds to gf will be dencted by 'éf

Theorem 1. T is of convergence type if and only if #T') has a Green's
function.

Proof:

1) We assume that XL (]:-’a'}n_1<:w

T
where, as before, a:y_lO . We show that

g (x) =% glx,a) =2 g(iTax[)
converges and possesses the propertlies 10 - L% The convergence follows from
2,n-1
) = -
(It x) =0 ((1-l1 =7)""7)

and

14T£ﬂ2: (LJﬂgﬂlJXﬁ)S ffwxpl(l_‘ﬂe)

[x,a]°

0
It is obvious that g, has the properties 1° - =% 1o prove 4= let

h  be any function with the properties 1° - 29 and let gé@ be a partial sum
of the series gI‘ . We have gE = (0 at the boundary. By the maximum
principle for h-h functions g¥ < h , and hence also gr,(x):gh(x)

2} Assume now that gr exists. We denote by n{r) the number of points



a,=Y,0 in the ball B(r); we choose r sc that no

o] -

Choose p so small that the balls B(av,p) do not intersect and are

contained in B(r) . We apply (17} in (5.5) to conclude that
(8) [ %8 g, =0

J
5(z) US(a»p)%™n

We let p -0 and observe that the integral over S(av,p) is the same as

ve(x,0,)

—~——— do
S(av:p) bn.h b

and this in turn has the same 1imit as

(9) 212 i oelxa)
5. n-2 ;
(1-fav! e s(a_,p) 7
Here g(x,av)==g([TagxI) and
2. n-2
> T x| L-[T =x
bg(xaav) — gl (lTaXI) % - av >
oy v An fTa x| P
Ta
- 2, 2 -
(1-fa 173 (2-]%]7) n-2 1 s
Clog [p )
EINS ph e 0P Erly

- (1-{a\)l2)n"2 1

n-1
e

log [Ta X, =

It follows that (9) tends to @, and we conclude from (8) that

n-1

(r)l h.' n (l—re)n_g :

ogr

or

a(r}

da
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We can now integrate to obtain

T
Pon-2
o (gr(roi;) —gr-(rc: ) Aw(g) = [ (1-t )72 () ak
[4H] S(l) - ﬁl’l—l
o
Here g._ (YE) >0 while g*,(roi} is independent of We have proved that
the integral
1
[ 2.n-
b (1=t w(t)as
r -
o tn 1
converges. This means that
1
I3 -2
{10) [(1-6)"7 n(t)at <
0

It is a very familiar fact, proved by integration by parts, that the integral
(10} converges together with

L n-1
[- )" an(s)
c

which is nothing else than

E(l- favj )n"l‘<m

The theorem is proved.
7-10. In the theory of Riemann surfaces it ig customary to say that a surface ig
of' class OG 1f it has no Green's function. There is no reason why this
terminology should not be carried over to arbitrary Riemannian manifolds ang
even to those quotient manifolds (') which are perhaps no manifolds. OQur
theorem states that I' is of divergence type if and only if ¢m{rlco

G

Similarly, a Riemann surface ig =aid to be of class OHB if it carries



no bounded harmonic functions other than the constants. An important theorem

of P. J. Myrberg states that

In other words, if there 1s a non-trivial bounded harmonic function, then there
ig also a Green's function with an arbitrary pole. The opposite inelusion
is not true.

The terminclogy and the theorem carry over to arbitrary Riemannian spaces.
The proof remains essentially the same ag for Riemann surfaces. We refer to

the proof in Ahlfors - Sario, Riemann surfaces, p. 204 -~ 206.

We can therefore state:
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Theorem 2. If T ig of divergence type there are no non-constant bounded harmonic

functions on WKT)

7.11. Let G Dbe a transformation group acting on a measure gpace ”

One says that G acts ergodically on 7 if every invariant subset of
is elther a null-zet or the complement of a null-get.

Theorem 3. If I' is of divergence type, then T acts ergodically on §

Proof. 1If not there would exist an invariant weasurable set ECS with

0<m(E) <m(S) . Use the Poisson formuls {27) in (5.7) to construct the harmonic

function whose radial boundery values are given by the characteristic function

% of B . The function is

1-Jyl®) P () an(x)

u(y): 5;_ ur .
n silx-yl

Because X(yx)::x(x) for €T one finds

. 2Y n-1
ulyy) = L Y&LLH (.x)r.'(x)[nnl do(x)
“n g TYT'WI R
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) 1 u!: 1“,Y'2 n-1
0§ {x-yl°

¥(x) dw{x) = u(y)

where we have used the identitiges - vyl =y ) (- 191%)  ana
lyx - vyl = [y @) [ v ()] 1% - v
The funetion u is antomorphic, h-h , and non-constant. This contradicts
Theorem Z. Hence the gset E cannot exist.
7.12. Consider a ball B_=3B(r,) =B, (p_) about the origin. We denote by
L(BO) the set of all E €8 such that the radius to £ meets infinitely many

.YB

o Y& . Another way of saying the same thing is that §ETL(BO) if there

are infinitely many points .YO at non-euclidean distance <p o from the
radins (0,E) . Geometrically, this means that there are infinitely many

.yO==av inside the lens-shaped region shown in Fig.l5 arbitrarily close to £ . 1In

Fig. 15

particular, there are then infinitely many av in the Stolz cone with the

opening q%:=2 arc tan £ If this is true for some BO then £ is

sald to be a conical limit point and the set

L= L(Bo)

is the conical limit set of © . Obvicusly, LcCA




Tf e 1is a conical limit point for the orbit [0 , then it is also a
conical 1limit for any orbit pa . 1Indeed, if ’YO is at n.e. distance

<o from the radius (O,g} , Then 'ya is at distance § %)-+d(o,a} from

o
the same radius.

This leads to another characterization of conical limits. The radius
(0,g) 1is a geodesic and it projects to a geodesic on m{r) . If L is a
conical limit this geodesic will come again and again within some fixed distance
from any given point. On the contrary, if ¢ 1s not a conical 1limit, then the
geodesic will eventually leave any compact set (the geodesic tends to the
"ideal boundary"). In particular, if m(r) is compact, then all £¢8 are

conical limits.

Lepmsa 3. If T ig of convergence type, then nm(L}=0

Proof. As usual the orbit 0 will be written as a sequence {a 1 . Agsuming
E— v
convergence there exists, for every >0 ;@ Vg such that
n-1
(11) p{t-la )77 <
YV v
o]
Assume that 5g;L(BO) . There is then an a with v>v, inside the

: v

Stolz cone with angle 9 arbitrarily close to £ . Let « be the angle
N

between £ and av . The faet that av is in the Stolz cone translates by

trigonometry to

2

-la |- = s
1 % cos (¢0-+7¥J

2 sin =¥ sin (g +0 )
< - o v
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In the limit

{12} lim v < tan @ .

The point ¢ 1is contalned in the spherical cap with center a /la ; and
Voo

radius & . This  1is covered by all these caps with v3>vo . The
- W
area of each cap iz asymptotically proportional to & n-1 which is majorized
v
by (1«-[avi)n"l . Hence the measure of L{(B } is < constant times €
8]

by (11), and consequently egual to zero. Finally, L is a union of countably

many L(BO) , and we have proved that m(L)=0

7.13. The conical limit set ig in any case invariant under T . For If
tcl and ye1 then + maps a Stolz cone at ¢ on a set contained in a
slightly larger Stolz cone at 7

If T is of divergence type we conclude that either m(L)=0 or
m (L)::mh . Thus, for any group [’ only the extreme cases can occur.

We shall eventually prove that m( L)::uh for all pr of divergence type
so that the distinction between convergence and divergence 1s the same as
between m(L)=0 and m( L}::ah . lowever, it is approprizte at thiz time
to say something about the hilstory of the problem.

Originally the problem dealt with the geodesics on a closed Rlemamn surface.

In the 1930's important groundwork was done by Morse, Hedlund, Myrberg and
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many others. A very decisive step was taken by Fberhard Hopf (1936) who proved
that I° acits ergodically on Sx 9. irf the case of a compact Riemann surface

with or without punctures , The action is the ome that takes (z,p) to (y%.,yn)
This is of course very much stronger than ergodicity on 5

It did not take long for Hopf to realize that his theorem can be extended
to several dimensicns in a much more general form, and that finite volume is
not the right condition. In 1279 he proved the following;

Theorem. (E. Hopf) [° acts ergodically on Sx3& if and only if m(L)::&E

The proof makes essential use of Birkhoff's individual ergodic theorems
and cannot be considered elementary.

The wost recént development of the theory is due to Dennis Swullivan (1978).

Theorem. {(D. Sullivan)  acts ergodically on Sx8 if and only if 3
is of divergence type.

His proof uses Markov chaing, and I must confess.that I do not understand
it. However, there are now in exilstence relatively elementary proofs of the
fact that every 1 of divergence type satisfies w(L) =@ - Such proofs
have been given both by Sullivan and Thurston. In what follows we shall give
& rather detalled version of Thurston's proof.

7-1h. The action of I on Sx8 ig defined by v(g,q)={(yg,y7) . This action

ig =said to be digsipative If {here exists a measurable set A~8x5 such that
1) anya=@ for all yer\I
2)  mlliya) =u(Sy8) =«
2 mile Al =M07F ) =9

SH

Briefly, A 1is a measurable fundamental set.
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Lemma 5. Tf w(TL)=0 then the action of I on Sx5 is dissipative.

Proof. Suppose that (g,n)¢ (8-T)x (S-1) \ diagonal. Then

2 - -
Voo | . i e _
|‘.) a\)‘ ”ﬂ. a\)!
py the definition of L
As before y-lO:a and hence
W v
2.7
1-a |7)°
eyl = oIl ey ) e,

5 >
e-a |T[n-a |
W g AY

Bither ’g-a,}lf@f—ﬂf or I-n-a|>l[§-ﬂ'
v T2 ' T2
This implies

1-la V¥ fi-la )P
4 > W)

<
2
i~
|-
B
:

I'v\')(’é
B f%-&v[ ["ﬂ“a\,|

Therefore, by (13), r'yv'(g}'.[yv'(ﬂ)’ ~0 end it follows that there is vy €T
for which Iyo'(g}l .J'yo'(n)[ is a maximum.

Equivalently, since

, _ 1/2 1/2
[ve -vnl = Iy &} Iy ()l [g-1
this also means thé,t Hog -'-Yom is & maximum. In other words, if
g =y5 > M_=v] then
(18) g -n | zlve -]

for all ‘y er , and this is equivalent to

(15) ly' g )y )l <1
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For simplicity, let us azsume that the origin is not a fixed point. We claim

that the aset
a={(E,m] fY_'(E)l'l'v'(ﬂ)f <1 for y€r \ I}

has properties 1) and 2). Tn the first place if (&,7) and (go’ﬂo) are equivalent

they cannot both be in A for that would imply [%O-ﬂ0’2>’§—ﬂf and
boon] > |2 - f . Secondly, our construction has shown that every
| 'n go IT]O ? .

(Esﬂ) ig equivalent to a (Eo,ﬂo]é}g ercept in the following cases:

a)

=1
b) E¢el or negkl
o) Iy Iyl =1 for some yer\I .

It is clear that a) and ¢} are true only on a null-set, and if n(L)=0 the

same is the case of b). The proof is complete.
(The ides of this proof is due to Sullivan)
7.15. We epbark now on Thurston's proof of the following fact:
Theorem 4. If m(L)=0 , then I' is of convergence type.
Remark. This is a consequence of Sullivan's theorem. On the other hand,

Theorem L makes Sullivan’s theorem a consequence of Hopf's theorem.

Proof. {Thurston). We consider again a ball BO==B(p03 centered at the
origin and we denote its Images Y;IBO with Bv and the shadow of B\J with
B; . The measure of a zet HFc=S will now be denoted by ’Ef rather than
n(E)

The condition m{L) =0 can be written in the form

(16) Tim | 1 B
Yoo v>wo

U B!
o



G

Indeed, let %, denote the characteristic function of U B' . Then (16)

o] W
v
means that o

lim J4 %, (glam(g) =0
a

\JO-—*m g
while |L_r =0 means that

J‘ lim X {g')dcr(g) =0
g Voo O
These conditions are simnltaneously fulfilled by virtue of Fatou's lemma.
On the other hand, the assertion that 1 1is of ceonvergence type is, as

we have seen, egulvalent to

(%3]
(17) v B <,

It is evident that (16} implies {17} provided that the B; do not overlap too
much. The idea of the proof 1g to show that this is the casze.

Step 1. As a first simplification we show that one can discard many of the
}3\) . For this purpose we choose a number > 0O , which will ultlmately be

large, and use 1t to define a subsequence {\)k}z as follows:

10 Choose vO:O .

»° Suppose that Vgr vy kave been chosen so that the mutual distances
dfa ,a ) are all > . Tnhen chooge v a3 the smallest v  such that
\Ji o P k+1
oJ
d{a ,a ) >4 for 1=0,...,k

Fig. 17




This cholce is always possible and we see that the following is true:

a) d(a ,a ) >, for all h#£k

Yho Vg
b) to every  there exists =a v Such that d(av,av ) <p
k
There are ounly a finite number N of a with d(a ,0) < p and hence also
_ u Y =
only N points a with d(a ,a ) <, . When this is the case then
W Voo, =
&
- -
1 'avl <M
1-Ja | =
Vie
-1, . n-1
where M depends only on p - If ¢ (l-—[a !) < o 1% follows that z(l'-]av,) .
v
k

For simplicity we can return to the notation 2 for (16) remains true
and it is sufficient to prove (17) for the subsequence.

Step 2. We cheoose ; so large that the Bv do not overlap. We place an
observer at the origin and speak of total or partial eclipses when two shadows
overlap. The Bv will be subdivided into classes depending on the number

. of times they are eclipsed.

The class I0 consists only of BO . We remove BO and define I as
the class of all Bv that are completely visible from 0O . Wext we remove
all BvefIl and define 12 as the class of those Bv which are now completely
visible, and so on. Clearly, eovery Bv will belong to a class Im and the

_ ghadows of the Bveglm are digjoint.

It will be shown that

B' . | B
5 | v[.§ Ay ’vi

Im+l Im

where » < 1 . This will obviously imply (17).

Step 2. Every Bj‘EIm:+1 ig partially or totally eclipsed by a

N BiEEIm . Let ri’rj be the euclidean radil of Bi’Bj . We shall need an
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upper bound for the ratio rj/ri

Fig. 18

We refer to the pileture in which 8 and aj are at n.e. distance
< Py from the same radius. TLet bi’bj be the n.e. orthogonal prajections of

ai,aj on the radius. We have then

= - af - h
o < d(ai,aj) < d(bi,bj) *2p = 4(0,b ) - d(0,b, ) +3 < d(O,aj) (0,8, ) +1

J o]

or

——



101

and
p-lp
L+ a] 1rleje
1-||a.j > 1 - 2, |

which implies

~p +hp
1-a,] <2e °(1-1a,])
J i

By use of formula {4) we finally find

(18)

2P 5

-
< he™P ™05 cosh =

e

The main thing is that this guotient can be made grbitrarily small by choosing
p large enocugh.

Consgider now all the BJ. € Im+l

which are partially sclipsed by BiEIm

Their shadows B:j are disjoint and they lie asymptotically within distance

rj from the rim of Bi' - Thelr total area is therefore asymptotically at
most
Alr, +r,) - Alx -r]w_l_i
i j i Ty - lBl'f

(We have again used the notation A(r) for the area of a spherical cap with

radius r J. In view of the estimate we can thus choose o &0 that, for

m+1
that are partially but not totally eclipsed by some BiEIm will be less than

sufficiently large wm , the total area of the shadows BJ’. of all Bj €I
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1 T lBi"l
3 BiEIm
I 3 . s :
Step. 4. We pass now Lo the Bgeglm-+l which are totally eclipsed by a
BiegIm_ . We need an auxiliary leuma.
= - ' 1 . . .
Lemma 5. If E}gBi N Bj with Bieiﬁn s BJGEIm-%l s+ then the geodesic

(ai,g) intersects the ball Eﬁ with center 8 and n.e. radius 2o, » Where
P is the radius of B
o o
Proof. We map the unit ball conformally on the half-space " so that 0
goes to e and £ to o . We keep the names of the points ai,aj . The
geodesic (0,f) becomes a vertical line through e, and (ai,g) a vertical

through oy whose intersection with I{n_l we shall dencte by ¢

e O,
3
b.
a.//’: \
5 ]
1N
N
N\ a,
. | N\~
n -
= /Q‘X /;J'\\
O c

Fig. 19

Let bi’bj be the closest pointz to ai,aj on the vertical through ©
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and let Cj be the closest point to b on the vertical through ¢ (the

i

picture is misleading in as much as aj need not be in the same plane as the

two verticals). The non-euclidean distances are computed by
T
) 2 d el
.5b. = = l t —_—
d(al i I EE%?@ og cot 3
05
n
2 ¢ﬁ
d{b.,c.) = f dy = log cot > .
Jod ¢y sin g
But
|
cos ¢, = el = |c
t a, oy
i i
| < ; |
cog . = el < e < T = c08 $, since fb.fi>lbi
JoTem ] |ws i * J
J d-

so0 that o, >w, and
%3 1

d(bj,cj) <d(ai,bi) <,

It follows that
d(a,,c.) < dlab, ) +d(b ,c.) < 2
(ayp¢y) g alaypn) P K
and the lemma is proved.
The next pilcture shows on the left a Bi and some totally eclipsed Bj
together with their shadows. On the right the whole configuration has been

transformed by .Yi
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Fig. 20

i
The image yiBj is not the same as (Yi%j) . However, the lemma tells
\ - _ _
. 3 i
us that YiBj is contained in (yi%j)
Tt is clear that condition (16) remains true when B is replaced by EO

and ecach Bj by E% . Therefore, as soon as m 1g big enough,

' |
(19) jz lviBj.,

A

3 l(yiﬁj)'f < e

On the other hand, if ¢ ]”aa then yiO approaches the boundary while the

areca of the shadow of B, viewed from Y40 decreases’ to a positive limit
ao .  In other words,
: 1
20 .B.
(20) lv;B; 1 > o )
But

;B3] > (min [y; ()™ ey
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(21) [YiBi’ < (max IY}(X)[)HH}IBi! -
ia

where the minimum and mavimum may be taken with respect to Bi

From (19), (20) and (21) it follows that

]
! n-
5 !Bj[ < max |Yi(x) o e I B!
i min \(:;_ X aO i ‘

Here the maximum of

=

}vi{x)l=

is taken at the center and the minimun on the rim. The ratio tends to the same
limit as ri/(l-[ai[) and we know this limit to be Pinite There is thus

a constant K such that

»lBl <xe 3]

o) o}

We choose ¢ so small that the factor on the right is <1
3

This lets us conclude that the shadows of the totally eclipsed Bjelm:fl

mzke up at most one third of the ghadows of the BiegIm - Together with

our previous result for the partially eclipsed Bj we have proved that

B!

+ IB] <2 /BS

3 bX
B,
38 Tne1 B;el

]

m

for 21l sufficiently large m . This in turn proves that the sum of all the

_[Bif is finite, and hence that



n-1
b fl-fa\)“ <

The theorem is proved.

106
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8. Quasgsiconformal Deformations.

£.1 By way of motivation we shall first recall the basie properties of
gquasicomformal (q.c.) mappings in n-dimensions. A g.c. mapping is first of all

a homeomorphism.

F: Q-&Q

from one open set in H{n to another. One of several ways to impose the right
regularity conditions is to require that F is absolutely continuous on lines
(a.c.1.) . This means that the restriction of ¥ to a.e. coordinate parallel
line is absolutely continuocus.

Under these conditions the partial derivatives DiFj exist a.e. and we ecen form

the Jacobian matrix
or = |1 Dy, |
s.e. The Jacobian determinant will be denoted by JF and
(1) XF = (JF) " DF
is the normalized Jacoblan, while

(2) MF = (XF)T.XF

is the symmetrized and normalized Jaccbian. (X$ js the transpose of X)

F 1s called K— qc if

(%) xwl 2 = tr wE < k"

=
5
i

-
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where UgB50(n) and > Ny > > >0

Clearly,
(5) XF=v( ) U

where V is another orthogonal matrix, although U and V are not uniguely

determined in the case of egual eigen-values. Observe that Aok, = 1
and that

2
(6) K > ||| [7 = 0]+, 420 2 n

This implies upper bounds on hl’ln

and ll/ln , and sometimes K 1is
used to denote one of these bounds.

8.2. Because g.c. mappings ir n dimensions are difficult to handle it is
reasonable to linearize by passing to the infinitesimal case. Let (x,t)
be a one-parameter family of a.e. differentiable mappings which for ©t =0

has the development
(7) Plx,t) =x + bf(x) +o(t)
We denote dgfferentiation with respect to t by a dot and write
(8) F(x) = F(x,0) = £(x)
We assume that (7) can be differentiated to yield
DF(x,t) =T+t DF(x} +o(t)

or

(9) (DF) (x) =DF(x)
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Turthermore,
J(x) = trDf
: 1
{10) (XF) =Df-= trDT . 1

(MF) =Df +DET - % tyDf . I

A1l this motivates introducing the matrix

.
(11) szg(DerDfT) —%ter.I
or, in terms of indices,
of, af, 85.. n L
1 ‘ I

(12) (58,5 (5 F ) " B ?)xk '

47 0¥y 0¥y 1 %
Observe that +tr8f=0 . Thus Sf is obtained by first symmetrizing Df and
then subtracting the multiple of I which makes the trace O . The space of

gymmetric nxn watrices with zero trace will,in these lectures, be denoted

by av® . We shall use the square norm defined by
2
(12) 1Al 1% = tr(aa)

Definition 1. £ is called a k-g.c. deformation if [[sf]| <k./ n  a.e.

in
For n=2 we can use the complex notation f=u+iv , z=x+iy . It

turng out that

Ref Imf,

(14} gf = A 2
Imf_ —Ref_

z z

and ’]Sf'[g

olr |® sothat £ is k-g.c. if and only if [f_ [ Sk a.e.
z v
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Tn view of (14} it is reasonable to regard Sf as a natural generalization

of the compler derivative £_
Z

8.3. Our definition is still deficient because it does not spell out the

regularity conditions. We replace it by the following:

]
Definition 1 . A homeomorphism I ; #.I%n ig called a g.c. deformation

if f thas locally inbtegrable distributional derivatives Djfi and if the matrix-

valued function Sf Tformed with these derivatives has norm [[Sf’fgiLm_ It is

1 . <
k-g.c. if the L~ norm of [8f] is =%k/m
For n=2 a 0-g.c. mapping is conforwal {(this is Weyl's lemma)
and for n>2 all conformal mappings are Mdbius transformationz. It can be

expected that for n>2 there are only a few deformations with 8f=0

Lemma 1. If n>2 then S£f=0 if and only if £ 1is of the form
(15) T = a+Sx+be].2~2(bX)x

where a and b are constant vectors and 8 is a constant matrix which is
skew outside and constant on the diagonal.
)
Proof. We assume first that LeC- . For this proof only we denocte

components by superscripts and derivatives by =ubscripbs. The hypothesis means

that f?::-fg for i4j =and fi==f§ I£ i, 3, k are all different
ff_;i{ = -1l = £l - fg‘ - —fi:k and hence f}k =0

If j#% we can find h#$j,k and obtain f:ijk =f‘lﬁjk =0 . Also,
fkkjj - —fgkk - —I'Ekk - f};hh - fgfhh - -ﬁjj - "fl}zii -0 . Similarly, fijii =0

both for j=1 and j#i

Consequently all third and higher derivatives are zero, and it is easy to
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check that the lower terms have to be as in {15).

If f has merely distributional derivatives one uses the .trlck of convolving
with a radial function ae with support in B(e) . Since S(fx t‘)e) = Sfyw 66 =0
we conclude that f*’&p has the form (16) and in the limit for =0 f
has the same form. |

8., TLet ¢ be a differentiable function with values in a™ . We

*
define S © +to be a vector-valued function with the components

E
(16} (8 CP)i=DjQPij ,

where we are agslin using the summation conmvention.

It is readily seen by the Green-Stokes' formula that
+ *
(17) [(ss. ¢lax=-J(£.8 plax

provided that either £ or @ has compact support. The dot products are
abbreviations of Sfijmij and fi(S*m% . Because of {17) we regard S')e as
the adjoint of § . Wote that the formula remains valid as soon as @ 1is
continucus with loecally integrable distributional derivatives, and this will

henceforth be the required degree of regularity.

Tt is again instructive %o loock at the case n=2 . If
© ¢
11 12
CP =
P12 P

we write ow=u+iv with u=¢u_, v:wy,emdwe]et z=x+iy=xl+hb

‘ *
stand for the independent variable. If we identify the vector 5 ¢ with
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E *
(s cp)l +1i{S cp)Q we find that

{18} 5 ©=20,

O st
fes
H

. *
Together with 8f=f_ it follows that 8 8f=
Z

In the general case

(19) g Sf:% Af‘+(%-%) grad div f

Operators of this type are familiar from the theory of elasticity.

*
8.5. It is natural to look for fundamental solutions of 8 8f=0

%
We start with solutions of & y=0 where v shall have values in st . It
turns out that there are n linearly independent sclutions .yk s E=1, ... , n,
with the weakest possible gsingularity at 0O . They are given explicitly by
+ - . .

(20 v 0 =P B T B v (n-2) K

J ‘ n n+2

x| |

A short computation reveals that each term iz separately annihilated by
»*
S - The reason for the linear combinatlion is to make the trace egual to zero.
The singularity is weak enough to make QK(X) integrable, but the derivatives
are not.
X 1 2 - -

For mn=2 one finds that + and v are represented by 1/2 and 1/z
respectively. The connecticn with the Cauchy kernel is obvious and we shall
find that .y?j does indeed play very much the same role as the Cauchy kernel.

8.6. We shall now solve the eguation
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. k
which would imply S*Sgk=:0 . It is a good guess that the components of g

should be of the form

(p2) gi==a(r)ﬁikv%b(r)xixk y

where r==Tx’ as usual.

Elementary compubation gives

k .
{ - ' 3 )
S ]'.'LJ 1 (a'(r} +o(r)¥ ( 6ikx_ + Bjk}{i) + b'(r) xixjxk
2 r J r
-1 s, % (a'(x) +p(r) +rb"{xr))
n o E T

Comparison with (20) gives the conditions

B e

r
o'(r) _ n-2
T h I_n+2
-% (E!lzj‘+b(r) +rb'(r}) =:lz
r

The lagt is a consequence of the first two and one finds

(22) Ky =z Sk one %

' i n(n-2) _n-2 n n
I . I

. - k 3 =D

if n>2 and g = (1og r) By for n=2

8.7. The following problem arises naturally:
Pproblem. If one knows Sf , how can one find f , and what conditions
must the matrix-valued function Sf satisfy?

In other words, when does the inhomogeneous equation

{ak) Sf=vy
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have a solution, and how can ore find i1t? For n=2 it is Xunown that the
equation is always solvable and the solution 1s given by the generaiized
Cauchy integral formula, also known as Pompeiu's formula.

For gimplicity we shall treat only the case where 18 of class
L(R") and has compact support. From 8.3 we know that the solution of (2L}, if
it exlsts, is mwmigque up to functibns of the form (15).

The first theorem is a generalization of Pompeiu's [ormula which connects

f and ST

Theorem 1. Every guasiconformal deformation f satisfies

e £, () thP SP(x) oy S (xmy ) dx

¥sr)
+ [irs (n-2)alx - y))£(x) ] do(x)
8(y,r)

with cn==2(n‘-ljah . If f has compact support the formula reduces to

et (y) =~ [ 8£(x) .y (x - y) aw(x)

)

Proof. It is sufficient to consgider y=0 . Integration by’parts*-gives

*
) If ¥ has only distributional derivatives one has to consider integrals of

the form
e
I Difé(X)l(le)wij(x)dx

where A has a graph like 1



115

k k
= dx =
[osty v ax= | SR A
) -
B(r)-B(r,) B(r)-B(r,)
r
| rf ¥La0 =
r S
o 8(xr)
iy
o] -5 ! -
| J £, ¥i (aikxj‘+ w50 Ha-2) Gty e "Ly
r_ Slr) 07 n 12
o] r r .
r
= | (e (n-2) (M) do
,rOSr, 3:'2

In the limit for r, 0 the integral over S(ro) tends %o

ahfk(O)-+(nn-2§fi(0)8{l§ixk dw

(bviously,

wl'l
SYFl}\]{iXk doo=--Bgy. 3~

so that the limit adds up to 2(n-1) @ fk(O}

. Tl
Because ~£g§l£ = q(x)f the lemma follows.

r
8.8. A little more generally we shall define

(25) Ikv(g)==j v

() o] f(x-v)ax
J
Rﬂ

13

t0 be the k th component of the potential IV of v ; here ¥V is supposed
1

to be of class T with compact support.

Lemmsz 2. Ikv has the distributional derivatives
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(26) Dth(y)“wl%mey)-prN. jvijGGQ{ﬁjbbykm
hon
and Dhkaiﬂp for every p>1 , b = 5

Before proving this lemma we write down the explicit expression for

. 5 & 8
thf.(x) = Cig jh + ajk ih - 513 hk
J =
| %
(27) o Zud s i - %N
’X1n+2

8 5 8
+(n-2) inS5%e + Rk 4+ hkij
lx[n&E

S0 A
hdn'l-lt
We claim that this is a Calderon-Zygmund kernel. Since it 1s obviously

homogeneous of degree -n we need only check that

(28) [ ¥ () () = o0
8(1) |

Thig can be checked by computation with only a little bit of trouble

being caused by the last term in (27).

Without any computation at all we can also reason as follows: By Stokes'

formula

h'ij

f D \%.(K)dx==; J ng(x) ?? dg{x)
)-B(r.) 8(x)

B(r

2 1



Here the integrals over S(r

1
is homogeneous of order O
vanishes, and this implies (28}.

The Calderon-Zygmund theory informs
a.

e. and represgents a function in LP

Proof of the lLemma.

vy = | \Jij(x) wlzj (x~y)dx

| x-y| >p

i

J
x| >p

vij(x+y)

X .
yij(x)d_x

)} and S(r2

We assume first that
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) are equal simply because the integrand

It follows that the volume integral on the left

us that the principal value in (26) exists

for any p>1

[==)
vE(Q and write

at once that

for the translated potential. It follows
— k s
= + Vo=
DhIp(y) j thij(x v ) Yij(x)d”
l<| >p
-7 Ydx -
{29) | \Ej(x+y) Dhy (x)dx I
[x] >p s(p)
For p — O the surface integral tends to

.tx)xhdw(x}

The evaluation of this integral requires a formula for

j‘xixjxhxk den(x )

a(1)
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The easiest way to get this formula is to substitute (27) in (28). One cbtains

(46}

t T
™ = . + . . +a_ 6.
f X% % A = rys) (61J5hk alhaak % Jh)
5{1)
and finally
2 by,
X~ . + - BB
J1 Vij(XJ % M= nve (Sikajh 6ihajk) n{n+#®)ij hk

s(1)
Tt now follows from (29) that

k k
i = - -pr.v. [ " -y)dx
l}m qllp(vh ) bnvhk(yJ pr.v. | vij(xJ thij(x v dx
p— 0
It is known from the Calderon-Zygmund theory of singular integral operators

that the truncated integral converges to its pr. v. in P for every p>1l

From this it is trivial to conclude that the limit of DhIk is the distributional

F

derivative DhIk , and the lemma is proved for all V ¢ C¥

To prove it for general v we pass again to a convolution V*%Se where

geecm is supported in B(¢) and I 8,4 = 1 . From what we have proved

k : :
( = o : *
D 15(ves ) (y) = oy, 8 ) (y)
(30) - pr.v. [ (v..*8 )(x)D yk (x-y)dx
J iJ e h'ij i
The pr.v. i1s a bounded linear operator on P » b>1 . Therefore the right

hand side of (30)tends in L¥ to the right hand side of (26). Hence the left hand
side has & limit in IF and that 1limit is the distributional derivative.
The lemma is proved.

8.9. We regard Iv asg a vector-valued fumction with the components

Ikv . It makes sense to form S(Iv) x ond by Lemma 2 we find at onee:

h
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- —y)dx
vij(X)SYij’m{(x v)

—y

_ . Y _
(31} SIv(y}hk-— bnvhk(Y; pr.v.
where

oy, {x)=

ij,hk SYij)hk

. o
in the sense of Yij standing for a vector with the components Yij

The explicit expression is

n+2
‘ (B, B +5 _nte
S% 5 me = Bl O in T F Cig nk)I;lcTn

ST + +
+ n(®, ¥ et B xlxa) T—T w2 - (8, kxax +&; xaxk—%ajhx x Bkalxh TuTn D

- (n?ah) Xy gy T%T n+

S :S . ] .-Z . -
Obzerve that Yij,hk th,ij It 1is alsc a C kernel

Suppose that we apply (31) to v=5f . Because ISf=-c I we have
8Iv=-c 8f=-c_ v and thus
n n

(32) & vy (V) =iV 'ulJ( )Svij,hk(}c-y)dx

with

2{n+1)(n-2) w,
n n”'n nln+2}

L

Conversely, if v (with compact support) satisfies {22) then (31) implies

a1 3ﬂhk =~ cn'\‘hk( )
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1
g0 that Sf=v is satisfied by ¥=- 7~ v . We have proved:
n

Theorem 2. If wvel® has compact support a necessary and gufficient
condition that the equation Sf=v have a solution £ with compact support
is that v sabisPies (32).

As for the sufficiency we are not claiming that £ = - L Iv has compact
support, but since Sf=0 in a neighbourhood of infinity ;n ig trivial of the
form (15) and by subtracting that trivial solution of S5£=0 we obtain a
solution of Sf=vy with compact support.

8.10 We shall now apply Theorem 1 to show that every g.c. deformation

satisfies a near-Lipschitz conditlon.

Lemns 3. FEvery q.c. deformation £ satisfies a condition of the form

- 1 ! + l
(33) l£(y) - £y ] < AR |y-y' (1 +1og 75 571)
for Iyl 5 1yl <R <w
Proof. We may choose y'=0 . From Theorem 1 we obtaln an obvious

estimate of the form

wo [V Geey) Y 0 | ax

£ (y) - fk(O)! < B(%R)

k

+ ¢(R) |v]

Replace x by |y|x in the integral. Because wk(x} 1s homogeneous

of degree 1l-n we obtain



PGy oG ax= 15t ) e - v ()| | ax

B(2R) B Ty

it [yf:>R, the integral on the right is smaller than the same integral over
B(2) which is a finite constant by rotational symmetry. If ly] <R we must
also estimate the integral over 2 < le < %§|»

Tt is readily seen that [[yk(x-jghﬂ —yk(x)|l==o('xl'n) as x—e . Therefore
the integral is bounded by a constant times lOgW%ﬂ and we conclude that
(33) iz true for a suitable A(R)

8.11. We shall now prove that every g.c. deformation f£(x) with compact

support gives rise to a one-parameter group of conformal mappings Ft(x)==F(x,t)

such that F oF, =F_ . and F(x,0) =f(x) . More precisely:

Theorem 3. If f is a k-g.c. deformation then Ft is a eklt[—q.c.
mapping.

(This theorem was first proved by M. Reimenn).

Proof. Assume first that £ 1= CQD . For fixed x we conslder the
differential equation
(34) F(x,t) =£(F(x,t))
with initial condition F(x,0)=x . The existence of a solution Is classical

and the uniqueness follows because I satisfies (32) which is an 'Osgood

Condition"”. Actually, the solution will evist for all f because f is bounded.

Moreover,
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F(x,s-+t}==F(F(X,S},t)

for both sides are solutions of (34) with initial value F(x,s} . This

means that FtoFS:FS+t . In particular, FtOFrt = x and since F(x,t) is

continuous in x it is & homeomorphism.

Differentiation of (34) with respect to x yields
(DF.)(x,t)=(DfoF)DF(X,t)
Als=so
(log JF) = tr(DF);l(DF). = tr(DToF)
-1
We apply this to XF = (JF) Y DF  to obtain
(x¥) = ( -% tr(DFOF) + DEoF)XF
and
1o T o) T = (XE [ DEoF +DfToF-§- tr(DfoF) I¥F
from which it follows that
(Hxel1?) = 2ol (3£07) X (xF) ]
By the Cauchy-Schwarz irequality

er(se). ] < srl] ][] ] € IEGIBIR A

Together with ffo!] < k we now obtain



L jxw) |2 5 o] o] |

and by integration
e, ]| v &

where we have used the initial condition

HXF(X,O}

ey

If f 1is not differentiable we form the convolution T, = fxo, ond

use it to generate Fe . Because |’Sf€|[ <k it follows as tefore that
Fe(x,t) ijg K-g.c. with K==eklt’

We write the differential eguation Lor F€ in integrated form

%
Fe(x,t) =X +j fe(Fe(x,t) )t

Because the Fe are K-g.c. with a fixed K they are equicontinuous on every
compact set. Hence one can choose a sequence e(N} - 0 such that Fe(N)

converges to a linit Fo(x,t) which satisfies

T
= r
FO(X,t) _x+g f(FO(x,t))dt

This means thatl Fo(x,t) is the unique solution of {3:) and hence equal to
7(x,t) . Since it iz a homeomorphism and limif of K-qg.c. mappings with

Kzzek’t]

it is itself K-g.c. and the theorem is proved.
8.12. The quantity MF undergoes a very simple and predictable change

when T is composed with a Mébius trensformation. The correzponding rules
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. .
for the operators & and S are not quite as simple, but of vital importance.

Because we have used the letter vy in an important role we shall mnow use
capital letters A, B, etec. for Mdbius transformations. Recall that a Mobius
transformation A defines a change of coordinates that we prefer to write as
x =Ax (rather than x=Ax )} . A contravariant vector f{x) expressed in

the = - coordinates acquires the components

- -1 N
o E) = R ()

) -

oxX

which we can alsc write as

B(x) At (R) he(x) = (R) T he(AR)
We shall denote the function T by fA . Expliecitly,
. , -1
(35) £, (%) = A" (x) £ (Ax)

The formula (35) defines a group representation, for

(36} fAB=(fA)B

ag seen by the computation

(f

) () =57 () They (B =B () A (B) T £ (ABx)

1

= (AB) ' (%) "£{ABx) = £, (%)

AB

The basic transformation formula for Sf reads:



Lemma L.

(37)  s(r,) = {(pa) 7 (sron)Dn

Proof. We remark first that differentiation of the identity X“lX::I

yields
03X Hx+x Hp, %) =0
J d
and hence
p.x e " Hmx)x,
J J
Therefore, differentiation of

£ = (pa) Y ror)

A
leads to

(02}, =~ [(DA)*% DAl (foh)
(28) +((DA)-1(DfoA)DA}ij

In the first term on the right

[(DA)_]j)jDA] ~[(oa)7p,ma1 = (I8) [ (oa)

ik

where we have used the identity

2

Tha = (aa)® 1

(39) (DA)

T
DKDA]

1]

125
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Differentiation of (29) gilves

/) 2
2 2 -1
T VT _2 gt _Z (ga)P "Iy opa) T
(DKDA) DA+ (DA} D, DA == (78)" 0, Tog JA)T - (7a}" {tr(DA) DA
2
=% (ga)"™ (tr(DA)TDkDA)I X

Tnis shows that the symmetrization and normalization of the first term in

(38) contributes nothing. On account of (39)
((o8) " L(pron)palT = (04)"H(DFoR) DA
while
¢l (DA) "'DfoA DAl = tr DFOA

Therefore the second term of (38) contributes exactly (DA)_I(SfOA)DA
Obzerve that this computation has made essential use of the fact that DA
is a conformal matrix. More generally, we shall say that a funetion V{x)

with values in SMP transforms like a mixed tensor if

(L0) = (D&)"Y o)A

VoA

n
Note that Va has again values in SM
8.13. 1In order to continue this discussion of the invariance properties

we want to taske a good look at the relation
1 " ‘x-
(41} fot g an=- [1.8 ¢ dx

We would like these inner products to be invariant when f is replaced
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by fA and ¢ by ¢A . But this is not so if 8f and ¢ are both
transformed by (40) . Indeed, we would have

(S£) 376, = tr(SE) ~ trina~ ) (Sfon) (¢0A)DAT = (SE-$)OA ,

a%a
and the integral in (41) would not stay invariant. ToO remedy the
situation we regard the integral as an inner product between the

function 8f and the measure ddx

, and we transform the measure

according to the rule

(pdx) , = pa~L (4oB) DA-JA (x) dx

This amounts to transforming ¢ as a mixed tensor density according

to the rule
(42) 6,00 = A0 e on ) At T

gimilarly, the right hand side of (41} makes sense only if we
*
regard S ¢ as a contravariant vector density. In order to derive
*
the transformation rule for S ¢ let f be a test-function and con-

gider that on one hand

" * * n
jf-s o ax = |(fony. (s ¢on) ar (x) |Max
and on the other hand

jf-s*¢) dx = —ISf-cp dx = ~j(SfoA) (don) A (x) | "ax =
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Il

—I(SfoA) ) A'(x}qh(x)ﬂ'(x)_ldx

at(x) " Haron)a (x) . g, (x)ax

1l
4
.

H
-
—
[
e}
>

y~hTg*

il

di’ (for) . (A" (%
The comparison shows that
*
5% (p,) = |41 ()| " (30) T (8 0n)

Here A'(X)TrzlA}(x)IEA'(x)—l and if we were to regard S¥%p as a contravariant

vector, then the transformation rule would read
# *
(43) SHCREIVAIS I )

A A

*
However, it is more natural to regard v==5 (@A) as a covariant vector density

which transforms according to
' n,, T
VA(X)::IA (x)]"a (x)"viax)
for then &% satisfies S*(qh)::(s*m)A . To sum up: The pairings
(£,vd=[ £.vax,{v,0) =[ v.g ax

are defined and Mébius invariant when f 1is a contravariant vector, v 1is a



covariant vector density , v is a mixed tensor,

¢

which transform according %o the following rules &

Vv A(X)= A (x) -I\J(AK)P&' (x)
0, () = 187 ()] () gt ()
The invariance is in the sense that

<fA ) vA> =<f:v>

<'MA » (-PA> :{vs(P>
The operators 8 , S¥% zatisfy

s(f

) = (89

A

S (p,) =18 ()™ (5 0),

129

is a mixed tensor density

*
Sf 4is a mixed tensor, S ¢ is a covariant vector density. We do not define

or 8%y

49
<

8.1L. The fact that 8f is not a density while

S*¥v is defined only for

*
densities makes the operator S%8 meaningless exceplt In the euclidean case.

To rescue the situstion we need an invariant density. In hyperbolic space

such s density is given by the Poincare' metric.

with

We use the notation ds=plax]
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2

p:

2 3
l-f}ﬂ
the density itself being given by pn

Now we can pass from tensors and vectors to densities simply through
multiplication by pn . For instance anf is a mixed tenzor density,

* n . . . -n-2., % n . X
S p 8f is a covariant wvector density, and o S p 8f 1s a contravariant

vector. To account for these changes it is convenient to define two new operators,

* -n-
namely P::an and P =gp = 2P . They satisfy the relations

P(f,) = (PF)

A A

and thus also
¥ *
P P(fA) =(P Pf)A

The basic invariant gecond order differential operator is P*¥P and in

this connection we shall say that a vector-valued function f is harmonic if

P*Pr=0 . It is convenient to split this into two pieces, name Ly
0
(LL) w=PL , P =0
%
or 3 =0 . For n=2 1t turns out that o is a holomorphic quadratic
differential.

*
How deces P P compare with the Leplace-Beltrami Ah . In the first place

Ah applies to scalars and P¥P  to vectors. But in the Hodge-DeRham theory



there are two invariant operalors
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ds and &3 which apply to differential

forms of any order and in particular to first order differentials

Qh:ﬁldy

+. .+
1 fndxn

which may be identified with f

A differential ig harmonic if (A8 +8d)0=0

whereas in our terminology £ 1is harmonic if

(?11 - 1)dpn-= B3 -RL=0

Here

Ra=:R% £, dx,
J 1 4

i, ..
where Rj is the Ricel curvature tensor.

8.15.. We shall now atudy the
in some detail.

*
Lemme, 5. If P Pf=0 then

Y Yoo
a) j Sfijxj dn{x) =0

a(r)
(h5) 1) J” Sfijxixjdw(x) =0
S(r}
r* f\f =
c) ] SfijxixijdL\x) 0
8(z)

Proof. By Green's formuls

*
theory of functions £ that satisfy P PL=0

X
] +#*
oflsr b ao = [(87p78E) ax =0

J ij r
8(r) B(r)

and this implies (45a). Similarly,

i



and

o I(pSf}fd}{IpSfa
B(r) B(r)

p 8f
S(ri“ 13 1 T

n 5% n
T

ij :
B{r)

Il : =
= [ p st . (8 kaijl)dx
B{r)
= n = 50
= ur o 8L x. dx=0 by (L5a)
B(r)

Cor. E PP=0 implies

i YI;J.(X) do (x) =0

A

S{r)
In fa-zt,
25f
-k (n-2}
= S + gf
SflJYIJ( L0 Bj rn+2 lelxng

Now Theorem 1 (8.2) leads at once to the

Center formula.

e £(0) (I +{(n-2)Q(x) ) £ (rx) da{x)
n
Str
Recall that o =2i0l)
n n n

iJ

Ay =0

, O0<r <1
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If f has a continuous extension to S(1) ', or even if it has radial

1imits a.e., the formula ramains true for r=1:

(46")

c £(0) = [ (I +(n-2)Q(x))f(x)dw(x)
S
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There is a simplification if f£(x) is tengential for le::l for then

and the formuls reduces to

(h6m) £(0) = d[‘ f(x) dm

i
“n
S

8§.16. Just as in the case of Poisson's formula for harmonic funections we

can use (15') to express F(y) in terms of the boundary values. (learly,

we need only apply (46') to the function

1

-1 -1 -
fTﬂl(x} :(Ty Y (x) f(Ty x)
¥
Because Tyﬂl(0)==y we obbtain
(T, 0 (0 ) = [ (T4 (me2)a()) (2,7 0 7he(n ") an(x)
3
On the left
( '. "1\, "1_ — l‘( - - 12 —l
(L, (0) "= T y) = (1 i

and on the right we replace x by Tyx to obtain

e #{y) = (1- ly12) £ (T + (n2)a(T 2))T '(x)f(x)ltuy'(xJ[“"ldm(x)

r

J A ¥
g

Recall thatb Ty‘(x):!.Ty'(x)l A(x,y) and

Lyesy - y[®

2
-1y

{x,y]

or because x| =1 . We have also shown (see 2.8, (L0)) that

5
|x-y]
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I&x::A(x,y)x when |x| =1 . Thus

Q(Tyx)ij==ﬁﬁx,y)ik A(X,y)jkxhxk

or
QT x) = Mz, ylalx)aly.x)
AUTx) alwy) = alxylalx)
Taking these simplifications into account we end up with
Theorem b.
(¥7) e f(y) = -LL:—L§%%ln+l A, y) (T + (n-2)Q(x) ) £(x) dw{x)

g | x-y]
There is again a simplification if £ 1is tangential, for then Q(x)f(x)=0

Moreover, Alx,y) =(I-2Q(x,7))(I-2q(x)) so that, if we prefer, {47) can be

written as

2.n+l
vk chf(yj :.r_gkjﬁLXL_ln (T -2Q(x-y) ) f(x)dafx)

% -y P
2

8.17. FEvidently we can get a corresponding formula for Sf(y) by diff-
erentiating(47) or (17'}). Tor arbitrary y the computation becomes almost

prohibitive, but we can use the device of computing the derivatives only at y=0

Ignoring quadratic and higher terms in ¥y we have

(1—’ 2)n+l”“ 1 o~ n{xy)

and
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e -y, ) (%77 - -
Q(X—y}ij==(y1 L ( 33 0~ (Xixj XY iji)(l‘FQXY)

2
| -yl
~ = _ -X
xy %y VAR xj(xy) %Yy XYy

g0 that

(1- 1™ (1-2a(c-y), ~

1Y y[Eﬂ

(I..QQ(x)jij-fEn(I-EQ(x))ij(xy)-hxixj(xy)-+2(xiyj-+xjyi)

1t follows that

- bb ( }n%l (1-20(x-¥y )1J}y o = En(I'-EQ(X))inkf'uxiijk
Yk Tx Y1

2 . =7 v 28, %, 428 ¥, -M{n L)X X X
+._(ajkxi+alkxj) 2n By % Py X + 28 ¥y hin l)ylixk

" For simplicity we shall do only the tangential case. By virtue of

xjfj==0 on the boundary the result reduces to

ankfi(O) =" (enf x_+ kax,l)df.u(x)

1
¥
e8]

Symmetrization leads to
D ' =2 y )
cn( 1‘:fi(o) +Difk(0)) 2{n+1) ] (fjxk+kaj)dm

8

The trace on the right ig already zero and we find
i
(18) c 81(0),, = (n+1) J ez +fx o,

S

This is already quite neat, but we gel an even nicer formula if we replace

the integral by a volume integral. By the Green-Stokes Tormula
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and similarLy

0= L% do= | D, £, dx
B

It is now Very easy to Pass to the general formula. Ag before, we apply

factor is St(y) In the integral on the right we replace the integration
variable by ?yx - If we observe that (ﬁyhl)'(i&x)_l==1&'(xJ the integral
becomes
(xSET, 1 ()7 )|m
T Sf{x)r . T '(x dx
B

The scalar factors in ?y'(x) and ?Y’(X)-l cancel, and we obtain
(50) e Sf(y) =2(n+1) S A, y)8E(x) Ay, %)
o

yn

o(x) =p"sr(x) = (2.
1- fxf
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We obtain the reproducing formula for @ in the form:

Thearem 5. IF qw=anf with tangential f and 8S¥p=0 , then

{jl) cn;p(y) =2(n+1) Jr‘ A(};,y) ¢ (X) A(y,x) (1- lxle)ndx
B [x,5]7"

It is instructive to compare (51) with the Bergman kernel formula for
analytic functions in the unit disk. If o(z) is complex analytic for
lz| <1 , then

oz —lz!2 i
9(§) = T T dxdy
fﬁ<l (1- CZ

for all lg]<:1 s provided that

f f fm(z)f(l-,zlg)gdxdy<:m .
lz] <1
COne checks that

2(n+1) - {n+1l)n
<, (n-—l)uh
does indeed reduce to %— when n=2 . Clearly, the matrices Alx,y) and

Aly,x)} account for the argument of the kernel.
Remark. We have proved Theorem 5 under much weaker conditions, but it does

remain true as soon as

(52) e (-1 ar<a
B

» .
8.18. Because of the invariance properties of P and P all our

considerations are easily adaptable to discrete groups.
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Let T be a discrete subgroup of M‘(Bn) - We introduce the following

definitions:

Def.1. If the vector-valued function f£(x) satisfies

fA(xJ =4 (x)nlffﬁx) = f(x)

for all Ag¢rp » then £ is said to be automorphiec under r

d

Def.2. A mixed tenszor density o{x) 1is automorphic under ' 5f
) = ! ot YITE A -1 ' _
) = [A G [™ A1 (0 " hp(hx) A" (x) = w(x)

for all AET

Def.3. A mixed tensor v(x) is a B:lirami differential if
' -1 : -1
\)A(x) =A'(x) " v(Ax) A'(x)T " =u(x)

for all AE€T

If £ is eubomorphic, then Sf is aBeltrami differentianl and p"Sf is an
awomorphic mixed density. Conversely, if @=Pf is aUtomorphic it doeg not
follow that f ig automorphic, bub only that S(fﬁ-—f)==0 .. In other words,
f,-f 1is trivial, i.e. the components are quadratic polynomials. We write

A

fA-f:pAf and call pAf the period of f under the mapping A

The periods satisfy the cocycle condition
= (y £
PABf (pAf)B +pB_

for
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= - - :ﬁ - -
Papt (f)g - T+ (T £)=(f, f)B+(fB f)

A vector Ffunction with zero periods . defines a vector function on the guotient
manifold Mr .
8.19. As far as boundedness is concerned there are two important conditions.
Condition L. A mixed tensor v(x) isg said %o be of class LW(T} if it

- is measurable, if |[v/x)|| is(essentially)bounded and v, =v for all v Er
% Q)n

We can use the same terminology for tensor densities o(x) when v==w(x)(1"2
1e in L7()

Condition 2. The tensor density o(x) 1is =aid to be of class LI(F) if

[ Ho(x)[|dx<e
B/T

Here the integrand 1s invariant so that the integral can be taken over any
fundamental set , for instance the Polncare' fundamental polyhedron P(r)

Remark. Recall that Il@(x)l] refers to the square norm of the matrix.

In particular, ¢ € Ll(I) if

[ el ax<o
- B

without any automorphy condition. In this situation the Poincare' @-series
applies and leads to 2w El}(TJ
Theorem 6. If cpEI}(I) then

Bp =1L
Agr A

. 1
converges absolutely a.e. and belongs to I (I')

Proof. Let P be a fundamental set for " . By assumption

[ ellax=% [ Hel|ax<e |
B AET AP



4o
But

gl = ] 1 tan)|[]a7 () Pa

AP P

and -1
gy (x) = 18" ()] A" (x) " Tp(ax) A7 (x)
g G 1 = 120 () 1) ) |
From this we conclude that

2) ‘r‘ZHr_pAHdX‘(co

( )
P

pu]|

and the convergence of the series follows. The same estimate shows Lhat

T ool lax<a
P

Pinally, @ © is aubomorphic because

(@9p)g=Z (905 =E9,,=00

A A

8.20. It is convenient to use the inner product

(s ) :j, w. b (1= [xfg)ndx
I B/T

12
when cpELl(TJ ) ?ELm(I") (i.e. v =¢(1-]x] ¥ € 1) . The invariance of
the inner product is obvious. Also, if @EL]“(I] » ¥ €L7(T)  then
Cowapl= (o)

Proof. Let X, be the characteristic function of P . Then

(CBp ) =(@gX0) = T (o X} = 5 (e 08),-1)_ = T, (Xoh™ )#)
r I Aer A T per AT Acr I

= (C_P,q,»\I
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Remark. If ¢ and ¢ € LINT” then (@tpﬂ%)r==(cm-@ Y)F

8.21. We rebturn to Theorem L and Poisson's formula (47). Let us fix k

and =%, [x[zzl , and consider the vector-valued kernel X{x,y) with the
components
2 \n+l
- y . (- ly) i
(54) K, (¥) o (x5
EX'd
% .

There is good reason to believe that K(y) satisfies P IK=C . Agsain,

direct computation 1s almost prohibitive.

Let us first drop the condition [x| =1 and replace (54) by

2yntl
55) k- Gl anop

! [x,y)e®
Then
. 2yn+l 2yn+l 2 -1
it e Lo (i LT Lot RO
[X:y] [XJyJ
By owr usual formulas
2 2
l_JTXy’-?: (1-1x]7) (;--f:ﬂ )
[z,71"
and

- 2
() = REL a0

% {K:.Y]

]

_ o -1
T '(y) "= -k A%, y)
[y ]

=0 that
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2. n - a 2, n+l _, -1
A-{x{D7k () = -l y (D77 T4y -
The right hand side is nothing else than [(1—]y|2)n+1ek]T so that
x
_ _ 2,-n _ 2, ntl
K, (v} = (1 | 5] ) T{(1-]y}j ") e 1o
X
where ey is the unit vector with components Sik .
Almost without computation one obtains
P((1~|y[2)e .. = const. (8, , v.+8,., v.~ 25, V)
k" 1ij “rTikg Tdkfi o on o Ti37k
s"p((1-]y]? = s
(8 P((1-|y| )ek)i = const. 6.,
* 2 - .12 nt2
(P P{(1-]y| e ); = const. (1 v i) 85

where the values of the constants are irrelevant. By the fact that

*
P P is an invariant operator it now follows that

n+1
e

* - * )
PPK(y), = (1-]x|% 7" pr (-] %) o s =
Ty
2, -n 2, n+2, -1 _
const., {1-|x]|*) (lh|TXy| ) Ty T
2 2. n+l
A-]x[7) =]yl
const. 2n+4| A(x,y)ik .
ix,y]

This is an algebraic identity which must stay in force when |[x|=1.

*
It follows that P PK{x,y) = 0 for |x|t 1 , and hence any integral

of the form

2. n+1
fly) = S‘ il:lij—lw~ Alx,y)h(x)dx

S [X;Y]zn
is a harmonic function of vy
8.22. There 1s a similar fact for Theorem 5 . More explicitly,

{51) reads
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e, (v)=2(n+1) [ a(x¥)y

21
n'ij 8 —*“*g—n A(X,y)jk %k(X)(l— ’Y’ ) dx
[r.¥]
One can show that
. N
AY 2
yJ [X:.Y] n
is of the form m, With 5., =- 7y for h#k and Thy = Ty (Skew-symmetric

outside the diagonal, constant on the diagonal). This has the effect that for

any y.x) the function

Lv(y]==f Alx,y)v(z)aly,x)dx
: ]2n

B [x,y

satisfies S Iwly) =0

The operator L has other interesting properties. 1) If v(x) is
automorphic (as a mixed tensor) then L v is automorphic as a mixed tensor
density).2)If €1 {p) then the same is true of Lv . 3} If g= . 5
is in LlfF) go is Iwv (1- IK[ )
Proof of 3. Tt is clear that

vy |1 < ¢ Ll
% [x,y]™"

dx

and hence

[X’Y]EH

< ' v
[ 1) oy S [ av IL&)_LL i
P P B
On partitioning B into copies AP one gees that

dx:fdx [ ..dy



BE

In this way
ir'”lm’yf‘”dyg_f”u(x)”dx dy -
P F :‘B[x:y}_

“But

M {1-1x 2)11 “n
B {x y 2 R

and we gbtain

fHvayJdegc_“g [ = “n [ o] ax
ng n

! l
(1-[x]%)n P

8.22., A weak finiteness theorem.
————————~thess theorem.

We sghall now introduce g rather specigl class Q) defined as followsé
Definition PEQ) if the following is tyye:

I. S*mzzo and g=Pf for some f with %xf=0 on 5 *)
IT. ©,=¢ Tor all per

I werh(r) n oy

{In other words, I Hollar < and ,’@(K)}{(l-—[xfe)n is bounded. )

B/T

IV. ¢ has a Smooth extension to SNQ  and thig extension satisfies
Qxie(x) = o(x) qx)
More explicitly,

1%y T E 0y
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Condition IV needs a motivation. For n=2 ¢ d22 ig a holomerphic
quadratic differential. The condition means that D d22 iz real on fz!::l
outside the limit set. When this is so g can be extended to ]z] > 1 by
symmetry.

For arbitrary n the symmetric extension of ¢ would be defined by

#*
Py where Jx=x . This condition reads

o(x ) = x| TN - 20(x) Yp(x) (T - 2Q(x))

and Tor |x| =1 it reduces to Q(x)g(x) =px)a(x)
The following is an analytic Finiteness' theorem whose iLopological and
geometric consequences for the quolient manifold M(T'} are not clear.
Theorem 7. If [ is finitely generated, then the dimenslon of the linear
space Q(T') is Ffinite.

Sketch of proof. As already mentioned (see 8.18) if ¢y =0 then P, f=

£A~f is a trivial vector function. As such each component of PAf is a

gquadratic polynomial in the Xy determined by a firite number of coefficients.
Suppose that [ 1s generated by Al?""AN' . There is a linear map
of Q{r) on a finite dimensional vector space which takes each €Q(r') into

the coefficients of PA f,...,PA £ . The kernel. of thisg homomorphism consists
1 n

of all ¢ such that the corresponding f 1is automorphic with respect to T
The theorem will be proved if we show that such &  must be identically zero.

For this purpose we study the Integral

A= _ r
J

@ij(x) Sfi,dx

d

2
P
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which can also be written as

3 (D o dx=-lfp dv+ [ p a
(56 R e ALY
P P AP

%_
where nj is the outer normal of pP )
The boundary oP consists of pairwise congruent faces of the polyhedron,
Part of (O and points on A . Let A and AA be 5 pair of corresponding

faces. Then

[ fiwijnjdo'=!f fi(Ax)¢ij(Ax)nj(Ax)fA'(x){n"1dg

AA A

Cn the right we substitute

fi(Ax) = (4" (x)f(x))i :A'(x)iafa(x}

035 (8%) = 1A' GO ™™ (A" (x) (x)a (x}‘l)ij

=BG M) (a0
n () = - (AA'(X}){D(X),‘JJ = - Jar(x)]" lA'(xJJ_dnd(x)

The minus sign is because A meps the outer normal at x% on the inner normal
at  Ax

The integrand Yecomes

T -2 I ] r -1 ¥ n (X)
- A ()] "4 (x)iafa(x)A (X)ingc(x)A (X)cj A (X)jd d
But A'(x)iaA'(x}ib= B [8'(x)]®  and A'(x)::}j A’(x)jd=6cd and we are left with

We are temporarily assumming that Green's formuls is applicable.
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- faxx)¢accx)nc(x)
and thus

.f f.p..n.dg = j-f $..n.do .
1713773 i¥137)
The integrals cancel against each other.
Suppose now that P is a finite polyhedron and that no points
of A belong to 3P . The remaining part of the boundary integral

in (56) is then

Now we make use of Conditicon IV  to write

- 2, . :
fi¢ijxjdm = f. ¢1jxijdg = flxl ;%51 kd
which is zero because fixi = 0 by assumption.This proves ($,4}) = 0O
and hence ¢ = 0 under strong reqularity assumptions.

In order to get rid of the extra assumptions we use the same
mollifier technicue as in the standard proof of the finiteness theorem
for Kleinian groups. Suppose that i ¢ Cm(ﬁ) , A~ =2 0 , has compact
support on P \ A and satisfies A (Ax) = A(x) at eguivalent points

of 8P . The earlier reasoning is sufficient to prove that
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(57) (9. 2¢) = —,I-fi 32 4, ax
P 3 1

The theorem will follow if we can find a sequence of Av such that
lv+1 and fi(BAv/axj)+0 boundedly on p .

Let §(x) be the cuclidean distance from x to A . At corres-
ponding points x and AX € 9P the distances §{x} and &((x) are
equal. To see this observe that |x|=|ax] and hence AT (x)| =

(1-|ax{%) /(1-x] %)

H

1 . Purthermore, for any vy

[axoay | = fxey [ 2 0 [F1ar (y) | %= |xmy| (A7 (y) |

_ 1
lax-y|= [xx-2a"Ty|= |x-y| |2 (y) |72 .

and hence min(|ax-2ay|,|Ax-y|) < Ix-y|. as y wvaries over | it

follows that & {ax) < 8{x) and by symmetry §{&x) = §(x) as asserted.

¢ is not smooth, but 6 (x) -8 (y) | Ix-y| and |grad s]= 1 a.e.

A

Let hv(t) be 0 in [0,1/v], linear in [1/v,2/v] and 1 for

t > 2/v . We shall choose

2e -1
§ {x)

= F
lv(x} hvh(log log

Although this function is not smooth it is not hard to see that (57)

(57) remains in force when A  is replaced by Av

It is evident that Av tends boundedly to 1 as v+w , As for

the derivative one finds that
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|ax, /x| < 2ve
Y ~ §(x)1log e (log log hgg—)z
_ § (x) § (x)
a.e. Actually, the derivative is zero except when
v/2 < log log 6(x) < Vo,
This leads to Ehe estimate

(58) ]axv/ax | < Be/vs (x)1log 5( ) .

Let us now extend f to all of RY by the symmetry relation

fJ = £ , that is to say according to the rule |x[2f(x*): (I-20(x))f(x).
Because of Condition I Q(x)f(x) = 0 on S and the extension is
consequently continuous. Moreover, 'Sf(x*) = (I-20(x})SE{x) (I-20(x))

so that |[[$f]| renains bounded. By Lemma 3 (8.10) we may therefore

conclude that f satisfies a near-Lipschitz condition |f(x)—f(y)|
O(|x—y[logT§%§T)

We observe next that f 1is identically zero on A . In fact,
for any A e ' , f{(ARO) = A'(0)f(0) and hence | £(no) [<jar(o)|{f(0) =
(l*IAOIZ)]f(O)]. Choose a sequence of A such that AQ tends to
x € A . It follows by continuity that f(x) = 0 .

Together with the near~Lipschitz condition we conclude that
[£(x)|= 0(8(x)1log 1/8(x)). In view of (58) this implies that
fiﬁlv/axj tends boundedly to 0 as v»® . This is precisely what
was still needed in order to conclude from {(57) that {(6,¢) = 0 ,

and Theorem 7 is proved.
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Remark. The theorem is Of course rather meaningless unlegs one
can show, in the opposite direction, that groups with a finite
dimensional C(I') have some rather Special properties, for instance

with respect to the topology of B/T .



