Student	Number:		

NATIONAL UNIVERSITY OF SINGAPORE

MA1100 - Fundamental Concepts of Mathematics

(Semester 1 : AY2013/2014)

Name of examiner : Assoc Prof Tan Victor

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Write down your matriculation/student number clearly in the space provided at the top of this page. This booklet (and only this booklet) will be collected at the end of the examination.
- 2. Please write your matriculation/student number only. Do not write your name.
- 3. This examination paper contains **SEVEN** questions and comprises **SEVENTEEN** printed pages.
- 4. Answer **ALL** questions.
- 5. This is a CLOSED BOOK (with helpsheet) examination.
- 6. You are allowed to use two A4 size helpsheets.
- 7. You may use scientific calculators. However, you should lay out systematically the various steps in the calculations)

Examiner's Use Only				
Questions	Marks			
1				
2				
3				
4				
5				
6				
7				
Total				

PAGE 2 MA1100

Question 1 [15 marks]

- (a) Use <u>mathematical induction</u> to prove that $n^3 < n!$ for all integers $n \ge 6$. (Hint: You need to show and use the inequality $(k+1)^2 \le k^3$ for $k \ge 3$.)
- (b) The Fibonacci sequence is defined by

$$f_1 = 1$$
, $f_2 = 1$, $f_{n+2} = f_{n+1} + f_n$ for all $n \ge 1$.

Use strong mathematical induction to prove that $2f_n + 3f_{n+1} = f_{n+4}$ for all $n \in \mathbb{Z}^+$.

- (c) Suppose you want to prove P(n) is true (only) for all integers $n \ge 7$ that are <u>not divisible by 4</u> using a version of mathematical induction as follow:
 - (i) Basis step: P(a), P(b), P(c) are true; and
 - (ii) Inductive step: $(\forall k \in \mathbb{Z}^+)$ $P(k) \to P(k+d)$ is true.

Write down the values for a, b, c, d.

D٨	GF	1 2	
_	(TI	, .)	

 $(More\ working\ spaces\ for\ Question\ 1)$

PAGE 4 MA1100

Question 2 [15 marks]

(a) Define sets A and B as follows:

$$A = \{n \in \mathbb{Z} \mid n = 6r - 1 \text{ for some integer } r\}$$
 and $B = \{m \in \mathbb{Z} \mid m = 3s + 2 \text{ for some integer } s\}.$

Prove $A \subseteq B$ using element method.

(b) Let A, B, C be three subsets of a universal set. Use algebra of sets to prove that

$$(A-B) \cup (C-B) = (A \cup C) - B.$$

State the properties (laws) that you use for your steps.

(c) Let $S = \{1, 2, 3\}$ and $T = \{a, b\}$.

List down all the elements in the set $\{A \in \mathcal{P}(S \times T) \mid |A| = 5\}$.

(Here $\mathcal{P}(S \times T)$ denotes the power set of the Cartesian product $S \times T$.)

(More working spaces for Question 2)

PAGE 6 MA1100

Question 3 [20 marks]

- (a) Define a function $f: \mathbb{R} \{2\} \to \mathbb{R} \{1\}$ by the formula $f(x) = \frac{x+2}{x-2}$. Prove that f is a bijection and find the inverse function f^{-1} .
- (b) Let $F: \mathbb{R} \to \mathbb{R}$ be defined by $F(x) = x^2$ and $G: \mathbb{R} \to \mathbb{R}$ be defined by $G(x) = \sin(x)$. Find the ranges of $F \circ G$ and $G \circ F$, and the inverse image of 0 under $G \circ F$.
- (c) Let $A = \{u, v\}$ and $B = \{x, y, z\}$. How many pairs of functions $p : A \to B$ and $q : B \to A$ are there such that $u \in A$ has two preimages in B under q and $q \circ p = I_A$ (the identity function on A)?

 Use arrow diagrams to list all such pairs.

PAGE 7 MA1100

 $(More\ working\ spaces\ for\ Question\ 3)$

Continue on page 16-17 if you need more space. Please indicate clearly.

PAGE 8 MA1100

Question 4 [15 marks]

- (a) Find relations R_1 and R_2 on the set $A = \{a, b\}$ such that
 - (i) R_1 is not reflexive, not symmetric, but is transitive;
 - (ii) R_2 is not reflexive, not transitive, but is symmetric.

Give your answers as ordered pair representation and briefly justify your answers.

- (b) Given a partition $P = \{\{1,4\}, \{2,3,5\}\}$ of the set $B = \{1,2,3,4,5\}$. Write down the equivalence relation R on B induced by the partition P. How many <u>different</u> equivalence classes does R have?
- (c) Determine whether the relation S on \mathbb{Z} defined by

$$x S y$$
 if and only if $x^2 \ge y$

is reflexive, symmetric and transitive. Justify your answers.

PAGE 9 MA1100

(More working spaces for Question 4)

PAGE 10 MA1100

Question 5 [15 marks]

- (a) Find gcd(378, 144) using Euclidean algorithm. Show your steps clearly.
- (b) Find the remainder of 44^{100} when it is divided by 7. Show your working clearly.
- (c) Rewrite the congruence equation $x^2 + 2x + 3 \equiv 0 \mod 6$ in terms of congruence classes of \mathbb{Z}_6 . Use that to solve the above congruence equation.

PAGE 11 MA1100

(More working spaces for Question 5)

PAGE 12 MA1100

Question 6 [10 marks]

- (a) If gcd(a, b) = 1, what are the possible values for gcd(a + b, a b)? Justify your answer.
- (b) Prove that for any integer a, if a and 35 are relatively prime, then $a^{12} \equiv 1 \mod 35$.

PAGE 13	MA1100
---------	--------

 $(More\ working\ spaces\ for\ Question\ 6)$

Continue on page 16-17 if you need more space. Please indicate clearly.

PAGE 14 MA1100

Question 7 [10 marks]

Let $A_1 = \mathbb{Z}^+$, $A_2 = \{\sqrt{2}, 2\sqrt{2}, 3\sqrt{2}, \ldots\}$, $A_3 = \{\sqrt{3}, 2\sqrt{3}, 3\sqrt{3}, \ldots\}$ etc.

- (i) Is A_n countable for every n?
- (ii) Is $\bigcup_{n=1}^{100} A_n$ countable?
- (iii) Is $\bigcup_{n=1}^{\infty} A_n$ countable?

Justify your answers.

PAGE 15 MA1100

(More working spaces for Question 7)

Continue on page 16-17 if you need more space. Please indicate clearly.

PAGE 16 MA1100

 $(Additional\ working\ spaces\ for\ ALL\ questions\ -\ indicate\ your\ question\ numbers\ clearly.)$

PAGE 17 MA1100

 $(Additional\ working\ spaces\ for\ ALL\ questions\ -\ indicate\ your\ question\ numbers\ clearly.)$