Continuity

Matt Rosenzweig

Contents

1 Continuity																						
	1.1	Rudin	Chapter 4 Ex	ercis	ses.																	
		1.1.1	Exercise 1 .																			
		1.1.2	Exercise 2 .														 					
		1.1.3	Exercise 3 .																			
		1.1.4	Exercise 4 .																			
		1.1.5	Exercise 5 .														 					
		1.1.6	Exercise 11																			
		1.1.7	Exercise 12																			 . ;
		1.1.8	Exercise 14																			 . ;
		1.1.9	Exercise 15																			 . :
		1.1.10	Exercise 20																			. :
		1.1.11	Exercise 21																			. 4
		1.1.12	Exercise 22																			
		1.1.13	Exercise 23																			
		1.1.14	Exercise 24												 		 					. ;

1 Continuity

1.1 Rudin Chapter 4 Exercises

1.1.1 Exercise 1

If $f: \mathbb{R} \to \mathbb{R}$ satisfies

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0, \quad \forall x \in \mathbb{R}$$

then f need not be continuous.

Proof. Consider $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} 1 & |x| > 0 \\ 0 & x = 0 \end{cases}$$

It is clear that f has a discontinuity at x = 0, but is continuous at every $x \neq 0$. The limit statement follows from continuity for all $x \neq 0$. If x = 0, then

$$f(x+h) - f(x-h) = f(h) - f(-h) = 1 - 1 = 0, \quad \forall h \neq 0$$

1.1.2 Exercise 2

If $f:(X,d)\to (Y,\rho)$ is a continuous mapping of metric spaces, then

$$f(\overline{E}) \subset \overline{f(E)}, \quad \forall E \subset X$$

Moreover, the inclusion can be proper.

Proof. Let $y = f(x) \in f(\overline{E})$, where $x \in \overline{E}$. Let $\epsilon > 0$ be given, and consider the open neighborhood $B(y; \epsilon)$. I claim that $B(y; \epsilon) \cap f(E) \neq \emptyset$. Since f is continuous at y, there exists $\delta > 0$ such that

$$d(x, x') < \delta \Longrightarrow \rho(f(x), f(x')) < \epsilon$$

By definition of closure, there exists $x' \in E \cap B(x; \delta)$, so that

$$\rho(f(x), f(x')) = \rho(y, f(x')) < \delta$$

But $f(x') \in f(E)$, which implies that $B(y; \epsilon) \cap f(E) \neq \emptyset$. Since $\epsilon > 0$ was arbitrary, we conclude that $y \in \overline{f(E)}$. \square

1.1.3 Exercise 3

Let $f:(X,d)\to\mathbb{R}$ be a continuous real-valued function on a metric space (X,d). Define the zero set of f to be

$$Z(f) := \{ p \in X : f(p) = 0 \}$$

Then Z(f) is closed.

Proof. Let $(p_n)_{n=1}^{\infty}$ be a sequence in Z(f) such that $p_n \to p \in X$. Since f is continuous, we have that

$$f(p) = \lim_{n \to \infty} f(p_n) = 0 \Longrightarrow p \in Z(f)$$

1.1.4 Exercise 4

Let $f, g: (X, d) \to (Y, \rho)$ be continuous mappings, and let E be a dense subset of X. Then f(E) is dense in f(X). Furthermore, if g(p) = f(p) for all $p \in E$, then g(p) = f(p) for all $p \in X$.

Proof. Let $y = f(x) \in f(X)$, and let $\epsilon > 0$ be given. Since f is continuous, there exists $\delta > 0$ such that

$$d(x, x') < \delta \Longrightarrow \rho(y, f(x') < \epsilon$$

Since E is dense in X, there exists $x' \in E \cap B(x; \delta)$, so that $\rho(y, f(x')) < \epsilon$ and therefore $B(y; \epsilon) \cap f(E) \neq \emptyset$. Suppose g(p) = f(p) for all $p \in E$. Let $\epsilon > 0$ be given. Since f(E) = g(E) are dense in f(X) and g(X), there exists $q \in E$ such that

$$\rho(f(p),f(q))<\frac{\epsilon}{2}, \qquad \rho(g(p),g(q))<\frac{\epsilon}{2}$$

Since f(q) = g(q), we conclude from the triangle inequality that

$$\rho(f(p), g(p)) \le \rho(f(p), f(q)) + \rho(f(q), g(q)) + \rho(g(q), g(p)) = \rho(f(p), f(q)) + \rho(g(q), g(p)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Since $\epsilon > 0$ was arbitrary, we conclude that $\rho(f(p), g(p)) = 0 \Longleftrightarrow f(p) = g(p)$.

1.1.5 Exercise 5

If

1.1.6 Exercise 11

Suppose $f:(X,d)\to (Y,\rho)$ is uniformly continuous. Then $(f(x_n))_{n=1}^\infty$ is a Cauchy sequence in Y for every Cauchy sequence $(x_n)_{n=1}^\infty$ in X. Let $\epsilon>0$ be given. Choose $\delta>0$ such that

$$x, x' \in X, d(x, x') < \delta \Longrightarrow \rho(f(x'), f(x)) < \epsilon$$

and choose a positive integer N such that

$$n, m \ge N \Longrightarrow d(x_n, x_m) < \delta$$

Then by uniform continuity,

$$n, m > N \Longrightarrow \rho(f(x_n), f(x_m) < \epsilon,$$

If f is a uniformly continuous real function defined on a dense subset $E \subset X$. Then f has a unique continuous extension from E to X.

Proof. Uniqueness follows from Exercise 4. For existence, first fix $x \in X$. By the density of E, there exists a sequence $(x_n)_{n=1}^{\infty}$ in E such that $x_n \to x$. Then (x_n) is Cauchy and hence $(f(x_n))_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} by our previous result. By completeness, $f(x_n)$ converges to some limit y. Define

$$f(x) := y = \lim_{n \to \infty} f(x_n)$$

We need to show that this definition is well-defined, i.e. does not depend on our choice of sequence (x_n) . If $(x'_n)_{n=1}^{\infty}$ is another sequence in E such that $x'_n \to x$. Then by uniform continuity, for any $\epsilon > 0$,

$$|f(x_n') - f(x_n)| < \epsilon,$$

for all n sufficiently large, which implies that $f(x'_n) \to f(x)$. To see that the defined function $f: X \to \mathbb{R}$ is continuous, first choose $\delta > 0$ such that $p, q \in E$ with $d(p, q) < \delta$ implies that $|f(p) - f(q)| < \frac{\epsilon}{3}$. Choose $p, q \in E$ such that $\max\{|f(x) - f(p)|, |f(y) - f(q)|\} < \frac{\epsilon}{3}$. Then

$$x, y \in X, d(x, y) < \delta \Longrightarrow |f(x) - f(y)| \le |f(x) - f(p)| + |f(p) - f(q)| + |f(q) - f(y)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

1.1.7 Exercise 12

Let $f:(X,d_X)\to (Y,d_Y)$ and $g:(Y,d_Y)\to (Z,d_Z)$ be uniformly continuous functions between metric spaces. Then $h:=g\circ f:(X,d_X)\to (Z,d_Z)$ is uniformly continuous.

Proof. Let $\epsilon > 0$ be given. Choose $\delta_1 > 0$ such that

$$\forall y, y' \in Y, \ d_Y(y, y') < \delta_1 \Longrightarrow d_Z(f(y), f(y')) < \epsilon$$

and choose $\delta_2 > 0$ such that

$$\forall x, x' \in X, \ d_X(x, x') < \delta_2 \Longrightarrow d_Y(f(x), f(x')) < \delta_1 \Longrightarrow d_Z(g(f(x)), g(f(x'))) < \epsilon$$

We conclude that h is uniformly continuous.

1.1.8 Exercise 14

Let I := [0,1] be the closed unit interval, and suppose that $f : I \to I$ is continuous. Then f has at least one fixed point in I.

Proof. Consider the continuous function $g: I \to \mathbb{R}$ defined by g(x) := f(x) - x. If f has no fixed points, then $g(x) \neq 0$ for all $x \in I$. By the intermediate value theorem, we must have g(x) > 0 for all $x \in I$ or g(x) < 0 for all $x \in I$. By hypothesis that $f(I) \subset I$, g(0) > 0 and g(1) = f(1) - 1 < 0, which results in a contradiction. \square

1.1.9 Exercise 15

Every continuous open mapping $f: \mathbb{R} \to \mathbb{R}$ is monotonic.

Proof. Let $x, y \in \mathbb{R}$ with x < y.

1.1.10 Exercise 20

Let E be a nonempty subset of a metric space (X,d). Define a function $\rho_E:X\to[0,\infty)$ by

$$\rho_E(x) := \inf_{z \in E} d(x, z)$$

 $\rho_E(x) = 0$ if and only if $x \in \overline{E}$.

Proof. Observe that

$$\rho_E(x) = 0 \iff \forall \epsilon > 0, \exists z \in E \text{ s.t.} d(x, z) < \epsilon \iff \forall \epsilon > 0, B(x; \epsilon) \cap E \neq \emptyset \iff x \in \overline{E}$$

 ρ_E is a uniformly continuous function on X.

3

Proof. To show that ρ_E is uniformly continuous, it suffices to show that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y)$$

Let $\epsilon > 0$ be small. By the definition of ρ_E and the triangle inequality, we obtain the inequalities

$$\rho_E(x) \le d(x,z) \le d(x,y) + d(z,y), \ \rho_E(y) \le d(y,z) \le d(x,y) + d(x,z) \quad \forall z \in E, x,y \in X$$

Taking the infimum over all $z \in E$. We see that $\rho_E(x) \leq d(x,y) + \rho_E(y)$ and $\rho_E(y) \leq d(x,y) + \rho_E(x)$, which shows that

$$-d(x,y) \le \rho_E(x) - \rho_E(y) \le d(x,y) \Longleftrightarrow |\rho_E(x) - \rho_E(y)| \le d(x,y)$$

1.1.11 Exercise 21

Let K, F be disjoint subsets of a metric space (X, d), with K compact and F closed. There exists $\delta > 0$ such that

$$p \in K, q \in F \Longrightarrow d(p,q) > \delta$$

If neither K nor F are compact, then the conclusion may fail.

Proof. Since K, F are disjoint and closed, it follows from Exercise 20 that $\rho_F(p) > 0$ for all $p \in K$ and ρ_F is continuous on K. Since K is compact, by Weierstrass' extreme value theorem, ρ_F attains its minimum at some $p_0 \in K$. Hence,

$$0 < \rho_F(p_0) \le \rho_F(p) = \inf_{q \in F} d(p, q) \le d(p, q), \quad \forall p \in K, q \in F$$

Choosing $\delta = \rho_F(p_0)$ completes the proof.

To see that the conclusion may fail if neither K nor F are compact, let our metric space be the rationals equipped with the Euclidean metric. Then $K := (\sqrt{2}, \infty)$ and $F := (-\infty, \sqrt{2})$ are closed in \mathbb{Q} , but neither is compact. However, $\inf_{p \in K, q \in F} d(p, q) = 0$ since points in K and F become arbitrarily close as they approach $\sqrt{2}$ from the right and left, respectively.

1.1.12 Exercise 22

Let A and B be disjoint nonempty closed sets in a metric space (X,d), and define a function $f:X\to\mathbb{R}$ by

$$f(p) := \frac{\rho_A(p)}{\rho_A(p) + \rho_B(p)}, \quad p \in X$$

Then f is a continuous function with $f(X) \subset [0,1]$, $f^{-1}(\{0\}) = A$ and $f^{-1}(\{1\}) = B$.

Proof. Recall from Exercise 20 that $\rho_A(p)=0$ and $\rho_B(p)=0$ if and only if $p\in \overline{A}=A$ and $p\in \overline{B}=B$, respectively. Since A and B are disjoint, we see that

$$\rho_A(p) = 0 \Longrightarrow \rho_B(p) > 0, \quad \rho_B(p) = 0 \Longrightarrow \rho_A(p) > 0$$

Thus,

$$f(p) = 0 \iff \rho_A(p) = 0 \iff p \in A, \quad f(p) = 1 \iff \rho_B(p) = 0 \iff p \in B$$

For any $p \in X \setminus A$,

$$0 \le \frac{\rho_A(p)}{\rho_A(p) + \rho_B(p)} \le \frac{\rho_A(p)}{\rho_A(p)} = 1$$

which shows that $f(X) \subset [0,1]$. f is continuous since the it is the composition of the continuous functions ρ_A and ρ_B .

Note that this exercise establishes a converse to Exercise 3: namely, every closed subset of a metric space is the zero set of some continuous function.

Since the image of f is contained in [0,1], we have that

$$V:=f^{-1}((-\infty,\frac{1}{2}))=f^{-1}([0,\frac{1}{2}), \qquad W:=f^{-1}((\frac{1}{2},+\infty))=f^{-1}((\frac{1}{2},1])$$

where V and W are open, since f is continuous. Hence, A and B are separated by disjoint open sets.

1.1.13 Exercise 23

For Exercises 23 and 24, see my post 'Continuity, Convexity, and Jensen's Inequality.'

1.1.14 Exercise 24