# NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS <br> <br> Ph.D. QUALIFYING EXAMINATION <br> <br> Ph.D. QUALIFYING EXAMINATION <br> <br> ANALYSIS (SAMPLE PAPER 2) 

 <br> <br> ANALYSIS (SAMPLE PAPER 2)}

Time allowed: 3 hours
Note that the passing mark is usually around 60 .
(1) If $\lim \sup _{n \rightarrow \infty} a_{n} \leq l$, show that $\lim \sup _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i} / n \leq l$.
(2) If $f$ is a nonnegative measurable function on $\mathbb{R}$ and $p>0$, show that

$$
\int f^{p} d x=\int_{0}^{\infty} p t^{p-1}|\{x: f(x)>t\}| d t,
$$

where $|\{x: f(x)>t\}|$ is the Lebesgue measure of the set $\{x: f(x)>t\}$.
(3) If $f$ is a nonnegative measurable function on $[0, \pi]$ and $\int_{0}^{\pi} f(x)^{3} d x<\infty$, show that

$$
\lim _{\alpha \rightarrow \infty} \int_{\{x: f(x)>\alpha\}} f(x)^{2} d x=0
$$

(4) Prove or disprove each of the following statements.
(a) If $f:[0,1] \rightarrow \mathbb{R}$ is a measurable function, then given any $\varepsilon>0$, there exists a compact set $K \subset[0,1]$ such that $f$ is continuous on $K$ relative to $K$.
(b) If $\left\{f_{n}\right\}$ is a sequence of measurable functions that converges uniformly to $f$ on $\mathbb{R}$, then $\int f=\lim _{k \rightarrow \infty} \int f_{k}$.
(c) If $f$ is Borel measurable on $\mathbb{R} \times \mathbb{R}$, then for any $x \in \mathbb{R}$, the function $g(y)=f(x, y)$ is also Borel measurable on $\mathbb{R}$.
(d) If $E \subset \mathbb{R}$, then $E$ is measurable if and only if given any $\varepsilon>0$, there exist a closed set $F$ and an open set $G$ such that $F \subset E \subset G$ and the measure of $G \mathcal{F}$ is less than $\varepsilon$.
(e) If $\left\{f_{k}\right\}$ is a sequence of function in $L^{p}[0, \infty)$ that converges to a function $f \in$ $L^{p}[0, \infty)$, then $\left\{f_{k}\right\}$ has a subsequence that converges to $f$ almost everywhere.
(f) If $f$ is Riemann integrable on $[\varepsilon, 1]$ for all $0<\varepsilon<1$, then $f$ is Lebesgue integrable on $[0,1]$ if $f$ is nonnegative and the following limit exists $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} f d x$.
(g) If $f$ is integrable on $[0,1]$, then $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \sin n \pi x=0$.
(h) If $f$ is continuous on $[0,1]$, then it is of bounded variation on $[0$,$] .$
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. If $f^{\prime}(-1)<2$ and $f^{\prime}(1)>2$, show that there exists $x_{0} \in(-1,1)$ such that $f^{\prime}\left(x_{0}\right)=2$. (Hint: consider the function $f(x)-2 x$ and recall the proof of Rolle's theorem)
(b) Let $f:(-1,1) \rightarrow \mathbb{R}$ be a differentiable function on $(-1,0) \cup(0,1)$ such that $\lim _{x \rightarrow 0} f^{\prime}(x)=l$. If $f$ is continuous on $(-1,1)$, show that $f$ is indeed differentiable at 0 and $f^{\prime}(0)=l$.
(6) Find an analytic isomorphism from the open region between $x=1$ and $x=3$ to the upper half unit disk $\{|z|<1, \operatorname{Im} z>0\}$. (You may leave your result as a composition of functions).
(7) Use Cauchy theorem to prove the argument principle.
(8) Evaluate the following by the method of residues:

$$
\int_{0}^{\pi / 2} \frac{1}{3+\sin ^{2} x} d x
$$

