NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS
 Ph.D. QUALIFYING EXAMINATION
 ANALYSIS (SAMPLE PAPER 1)

Time allowed: 3 hours
Note that the passing mark is usually around 60 .
(1) Prove or disprove each of the following statements.
(a) If f is of bounded variation on $[0,1]$, then it is continuous on $[0,1]$.
(b) If $f:[0,1] \rightarrow[0,1]$ is a continuous function, then there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$.
(c) Let $\left\{f_{n}\right\}$ be a sequence of uniformly continuous functions on an interval I. If $\left\{f_{n}\right\}$ converges uniformly to a function f on I, then f is also uniformly continuous on I.
(d) If $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|$ exists, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$ exists and the two limits are equal.
(e) If $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges for all $x \in[0,1]$, then

$$
\lim _{x \rightarrow 1^{-}} \sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} a_{n} .
$$

(f) If $E \subset \mathbb{R}$ and
$\mu(E)=\inf \left\{\sum_{I_{i} \in S}\left|I_{i}\right|: S=\left\{I_{i}\right\}_{i=1}^{n}\right.$ such that $E \subset \cup_{i=1} I_{i}$ for some $\left.n \in \mathbb{N}\right\}$, then μ coincides with the outer measure of E.
(g) If E is a Borel set and f is a measurable function, then $f^{-1}(E)$ is also measurable.
(h) If f is differentiable on a connected set $E \subset \mathbb{R}^{n}$, then for any $x, y \in E$, there exists $z \in E$ such that $f(x)-f(y)=\nabla f(z)[x-y]$.
(2) If f is a finite real value measurable function on a measurable set $E \subset \mathbb{R}$, show that the set $\{(x, f(x)): x \in E\}$ is measurable.
[10 marks]
(3) Let $g:[0,1] \times[0,1] \rightarrow[0,1]$ be a continuous function and let $\left\{f_{n}\right\}$ be a sequence of functions such that
[15 marks]

$$
f_{n}(x)=\left\{\begin{array}{cl}
0, & 0 \leq x \leq 1 / n \\
\int_{0}^{x-\frac{1}{n}} g\left(t, f_{n}(t)\right) d t, & 1 / n \leq x \leq 1
\end{array}\right.
$$

With the help of the Arzela-Ascoli theorem or otherwise, show that there exists a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)=\int_{0}^{x} g(t, f(t)) d t
$$

for all $x \in[0,1]$. (Hint: first show that $\left|f_{n}\left(x_{1}\right)-f_{n}\left(x_{2}\right)\right| \leq\left|x_{1}-x_{2}\right|$.)
(4) Find the number of zeroes, counting multiplicities, of the polynomial

$$
f(z)=2 z^{5}-6 z^{2}-z+1=0
$$

in the annulus $1 \leq|z| \leq 2$.
(5) Find an analytic isomorphism from the open region between $|z|=1$ and $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ to the upper half plane $\operatorname{Im} z>0$. (You may leave your result as a composition of functions). [5 marks]
(6) Use Green theorem or otherwise to prove the Cauchy theorem.
(7) Evaluate the improper integral

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

(8) State and prove the divergence theorem on any rectangle in \mathbb{R}^{2}.

