NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 2011-2012

Ph.D. QUALIFYING EXAMINATION

Paper 2

ANALYSIS

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination contains a total of TEN (10) questions and comprises THREE (3) printed pages.
- $2.\ \,$ Answer ${\bf ALL}$ questions. The maximum score for this examination is 100 points.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2

- Question 1 [10 points] For each of the following statements, prove it if it is true and provide a counterexample if it is false.
- (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function so that the directional derivative of f in any direction exists at (0,0). Then f is differentiable at (0,0).
- (b) Let U be a connected open set in \mathbb{C} and let $f: U \to \mathbb{C}$ be an analytic function. If there exists $z_0 \in U$ such that $\operatorname{Re} f(z_0) \geq \operatorname{Re} f(z)$ for any $z \in U$, then f is constant on U.
- Question 2 [10 points] Let X be a compact metric space. Show that there is a sequence of open sets $(U_n)_{n=1}^{\infty}$ in X such that for any $x_0 \in X$ and any closed set F in X not containing x_0 , there exists n so that $x_0 \in U_n$ and $\overline{U_n} \cap F = \emptyset$.
- Question 3 [10 points] Let f be a complex function that is analytic on an open set containing the closed ball $\{z \in \mathbb{C} : |z| \leq 1\}$. Assume that $f(0) \neq 0$ and that $f(z) \neq 0$ for any z with |z| = 1. Suppose that $(a_k)_{k=1}^n$ are the distinct zeros of f in $\{z \in \mathbb{C} : |z| < 1\}$, with respective multiplicities $(m_k)_{k=1}^n$. Show that

$$\sum_{k=1}^{n} \frac{m_k}{a_k^2} = \int_C \frac{f'(z)}{zf(z)} dz - \frac{f'(0)}{f(0)},$$

where C is the circle $\{z: |z|=1\}$, traversed once in the counterclockwise direction.

Question 4 [10 points] Let $f:[0,1]\to\mathbb{R}$ be a Lebesgue integrable function. Denote Lebesgue measure by λ . Show that the series

$$s_n = \sum_{k=-\infty}^{\infty} \frac{k}{2^n} \lambda \left(\left\{ x : \frac{k}{2^n} < f(x) \le \frac{k+1}{2^n} \right\} \right)$$

converges absolutely for each $n \in \mathbb{N}$, and that $\lim_{n\to\infty} s_n = \int_0^1 f \, d\lambda$.

Question 5 [10 points] For any $n \in \mathbb{N}$, the *n*-th Rademacher function $r_n : [0,1] \to \mathbb{R}$ is defined by

$$r_n(t) = \begin{cases} (-1)^{k+1} & \text{if } t \in \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right), \ 1 \le k \le 2^n, \\ 0 & \text{if } t = 1. \end{cases}$$

Show that $\lim_{n\to\infty} \int_0^1 fr_n d\lambda = 0$ for any $f \in L^1[0,1]$. Here λ denotes Lebesgue measure.

PAGE 3

- Question 4 [10 points] Let U be an open subset of \mathbb{C} and let (f_n) be a sequence of analytic functions on U. Suppose that (f_n) converges uniformly on compact subsets of U to a function f. Let $w \in U$ be an isolated zero of f. Show that there exist $n_0 \in \mathbb{N}$ and a sequence (z_n) in U converging to w such that $f_n(z_n) = 0$ for all $n \geq n_0$.
- Question 5 [10 points] Denote the Lebesgue measure and the Lebesgue outer measure on \mathbb{R} by λ and λ^* respectively. Let D be a subset of \mathbb{R} with $\lambda^*(D) < \infty$. Suppose that for any interval $I \subseteq \mathbb{R}$,

 $\lambda^*(D \cap I) \le \frac{1}{2}\lambda(I).$

Show that D is Lebesgue measurable and has Lebesgue measure 0.

Question 6 [10 points] Let (Ω, Σ, μ) be a measure space and let $1 \leq p_1 .$ $If <math>f \in L^{p_1}(\Omega, \Sigma, \mu) \cap L^{p_2}(\Omega, \Sigma, \mu)$, show that $f \in L^p(\Omega, \Sigma, \mu)$ and that

$$\int |f|^p d\mu \le \left(\int |f|^{p_1} d\mu\right)^{\alpha} \cdot \left(\int |f|^{p_2} d\mu\right)^{1-\alpha},$$

where $p = \alpha p_1 + (1 - \alpha)p_2$.

Question 7 [10 points] Let $f: \mathbb{R} \to \mathbb{R}$ be a nonnegative Lebesgue integrable function such that $\int f d\lambda > 0$. Show that $\lim \inf_{k \to \infty} \int |\cos(kx)| f(x) d\lambda(x) > 0$, where λ denotes Lebesgue measure.

[Hint: First consider characteristic functions of intervals.]

Question 8 [10 points] Denote Lebesgue measure by λ . Let $(f_k)_{k=1}^{\infty}$ be a sequence of nonnegative Lebesgue integrable functions on [0,1]. Assume that $\int_{[0,1]} f_k d\lambda = 1$ and that there is a constant $M < \infty$ so that $f_k(t) \leq M$ for all k and all $t \in [0,1]$. If $(a_k)_{k=1}^{\infty}$ is a nonnegative real sequence such that $\sum_{k=1}^{\infty} a_k = \infty$, show that there is a Lebesgue measurable subset E of [0,1] with $\lambda(E) > 0$ such that $\sum_{k=1}^{\infty} a_k f_k(t) = \infty$ for all $t \in E$.

[Hint: Egoroff's Theorem.]

Question 9 [10 points] Let (Ω, Σ, μ) be a finite measure space. Suppose that f is a nonnegative Σ -measurable function on Ω . Define $E_n = \{\omega \in \Omega : f(\omega) \ge n\}$ for each $n \in \mathbb{N} \cup \{0\}$. Show that f is integrable if and only if $\sum_{n=0}^{\infty} \mu(E_n) < \infty$.

Question 1 [10 points]

(a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function. Suppose that

$$f_1(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$f_2(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

both exist for all $(x,y) \in \mathbb{R}^2$, and that f_1 and f_2 are both continuous on \mathbb{R}^2 . If

$$\lim_{h \to 0} \frac{f_1(x, y+h) - f_1(x, y)}{h} = g(x, y)$$

exists for all (x, y) and g is continuous on \mathbb{R}^2 , show that

$$\lim_{h \to 0} \frac{f_2(x+h, y) - f_2(x, y)}{h} = g(x, y)$$

for all (x, y).

(b) Compute the integral

$$\int_0^\infty \frac{\sqrt{x}}{1+x^2} \, dx.$$

Question 2 [10 points] Let $f_n: [0,1] \to \mathbb{R}$ be a continuous function that is differentiable on (0,1) for $n=1,2,3,\ldots$ Assume that

$$\sup_{n} \sup_{x \in [0,1]} |f_n(x)| \quad \text{and} \quad \sup_{n} \sup_{x \in (0,1)} |f'_n(x)|$$

are both finite. Show that there is a subsequence (f_{n_k}) of (f_n) that converges uniformly on [0, 1].

Question 3 [10 points] Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc. Denote by \mathcal{F} the set of all analytic functions $f: D \to D$ such that f(0) = f'(0) = 0. Show that

$$M = \sup\{|f''(0)| : f \in \mathcal{F}\} < \infty$$

and find its value. Determine all functions $f \in \mathcal{F}$ such that |f''(0)| = M.

Question 6 [10 points] Let $f, g : [0, 1] \to \mathbb{R}$ be integrable functions with respect to Lebesgue measure λ . Assume that for any $a, b \in \mathbb{R}$

$$\lambda(\{t: f(t) \le a\} \cap \{t: g(t) \le b\}) = \lambda\{t: f(t) \le a\} \cdot \lambda\{t: g(t) \le b\}.$$

Show that fg is integrable on [0,1] with respect to Lebesgue measure and that

$$\int_{[0,1]} fg \, d\lambda = \int_{[0,1]} f \, d\lambda \cdot \int_{[0,1]} g \, d\lambda.$$

- Question 7 [10 points] Let $(f_k)_{k=1}^{\infty}$ be a sequence in $L^p(\mathbb{R})$, where $1 \leq p < \infty$. Suppose that $f_1 \leq f_2 \leq \cdots$ and $\sup_k \|f_k\|_p < \infty$. Show that $(f_k)_{k=1}^{\infty}$ converges in L^p norm.
- Question 8 [10 points] Let f be a Lebesgue integrable function on [0,1] and denote Lebesgue measure by λ . Suppose that $0 < \alpha < 1$. Show that for almost all $t \in [0,1]$, the function $F_t(x) = f(x)|x-t|^{-\alpha}$ is integrable on [0,1]. Define $g(t) = \int_0^1 F_t d\lambda$ where the integral exists and 0 otherwise. Show that $g \in L^1[0,1]$.
- Question 9 [10 points] Let $a, b \in \mathbb{R}$ with a < b and let $f : (a, b) \to \mathbb{R}$ be a continuous function. Define F to be the set of all $x \in (a, b)$ such that f'(x) exists (as a real number). For each $k \in \mathbb{N}$, and any $p, q, q' \in \mathbb{Q}$ with a < q < q' < b, define

$$H(k, p, q, q') = \{x \in (q, q') : |f(y) - f(x) - p(y - x)| \le \frac{|y - x|}{k} \text{ for all } y \in (q, q')\}.$$

Express F in terms of the sets H(k, p, q, q') and deduce that F is a Borel set.

Question 10 [10 points] Suppose that $1 \le p < \infty$. Show that there is a linear bijection $T: L^p[0,1] \to L^p(\mathbb{R})$ such that $\int_{\mathbb{R}} |Tf|^p d\lambda = \int_0^1 |f|^p d\lambda$ for all $f \in L^p[0,1]$, where λ is Lebesgue measure.

Ph.D. Qualifying Examination 2013 Jan (Analysis)

(1) A function $\phi: \mathbb{R}^n \to \mathbb{R}$ is said to be locally Lipschitz if given any $x \in \mathbb{R}^n$, there exist $\delta, L > 0$ (depending on x) such that

$$|\phi(z) - \phi(y)| \le L|z - y| \text{ for all } z, y \in B_{\delta}(x) = \{t \in \mathbb{R}^n : |x - t| < \delta\}.$$
 (*)

If ϕ is locally Lipschitz on \mathbb{R}^n , show that for any compact set $K \subset \mathbb{R}^n$, there exists a constant M > 0 (depending on K) such that

$$|\phi(x) - \phi(y)| \le M|x - y|$$
 for all $x, y \in K$.

(2) Let $w \in L^1(\mathbb{R}^d)$ be strictly positive and $\{f_n\}: \mathbb{R}^d \to \mathbb{R}$ be (Lebesgue) measurable functions such that

$$\lim_{m,n\to\infty} \int_{|f_n - f_m| > t} w(x) dx = 0 \quad \text{for any } t > 0.$$

Show that $\{f_n\}$ has a subsequence $\{f_{n_j}\}$ that converges a.e. to a measurable function g(x).

(3) Let Ω be an open connected subset of \mathbb{R}^3 . Suppose $u \in C_0^2(\Omega)$ and $f \in C_0(\Omega)$ are such that

$$\Delta u - 2u = f$$
 on Ω where $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$. [5]

 $\int |f|^2 dx = \int |\Delta u|^2 + 4|\nabla u|^2 + 4|u|^2 dx \text{ where } \nabla u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}).$

Show that

(4) Compute (a) $\int_{\gamma} e^{z}/z^{3}dz$, where $\gamma:[0,1] \to \mathbb{C}$ with $\gamma(t) = e^{i6\pi t}$ and (b) $\int_{0}^{\pi/2} \frac{d\theta}{a + \sin^{2}\theta}$, a > 0. [12]

(5) Let $f: \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \to \mathbb{R}$ be such that f is continuously differentiable with $\nabla f(0,0) = (1,2)$ and f(0,0) = 0. Show that there exist $\varepsilon > 0$ and $\gamma \in C^1(-\varepsilon,\varepsilon)$ such that $\gamma(0) = 0$ and $f(x,\gamma(x)) = 0$ for $x \in (-\varepsilon,\varepsilon)$. Compute $\gamma'(0)$ if possible. [5]

(6) Explain in details with the help of the fact that $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$ for |x| < 1 why

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k} = -\log 2.$$

- (7) Let $w \in L^1[0, \pi]$ be nonnegative. Suppose $\{f_n\}$ is a sequence of (Lebesgue measurable) functions that converges a.e. to a function f. Suppose $\int_0^{\pi} |f_n|^2 w dx \to \int_0^{\pi} |f|^2 w dx < \infty$. Show that $\int_0^{\pi} |f_n f|^2 w dx \to 0$. [10].
- (8) Prove or disprove not more than six (6) of the following statements. [36]
 - (a) If ϕ is a function of bounded variation on [a, b] for all $[a, b] \subset \mathbb{R}$ and g is a nondecreasing function on [0,1], then $\phi(g) \in BV[0,1]$.
 - (b) Let \mathcal{C} be the Cantor set. Then $\chi_{\mathcal{C}}$ is Riemann integrable on [0,1].
 - (c) If $\{f_j\}, f: (0,1) \to \mathbb{C}$ are integrable such that

$$\lim_{j \to \infty} \int_K f_j(x) dx = \int_K f(x) dx \text{ for all compact subset } K \text{ of } (0,1),$$

then

$$\lim_{j \to \infty} \int_{(0,1)} f_j(x) dx = \int_{(0,1)} f(x) dx.$$

(d) If $\{a_{i,j}\}_{i,j=1}^{\infty}$ is a collection of nonnegative real numbers, then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i,j} = \lim_{N \to \infty} \sum_{\{i,j: i+j \le N\}} a_{i,j}.$$

- (e) Let $\{f_n\}: \mathbb{D} = \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ be analytic. If there exists f on \mathbb{D} such that $f_n \to f$ uniformly on any compact subset of \mathbb{D} , then f is also analytic on \mathbb{D} .
- (f) Let $u: G \to \mathbb{R}$ be a harmonic function where G is an open connected set in \mathbb{C} . Then there exists $v: G \to \mathbb{R}$ such that the function f(z) = u(z) + iv(z) is analytic on G.
- (g) If a function is piecewise differentiable on [a, b], then it is of bounded variation on [a, b].

(Note that a function f is said to be piecewise differentiable on [a, b] if there exist a partition $a_0 = a < a_1 < \cdots < a_k = b$ of [a, b] and $g_i : [a_{i-1}, a_i] \to \mathbb{R}$ such that its derivative g_i' is continuous on $[a_{i-1}, a_i]$ and $f = g_i$ on (a_{i-1}, a_i) for $i = 1, \dots, k$.)

(h) Let $f: \mathbb{R}^n \to \mathbb{R}$ be locally integrable and for all $x \in \mathbb{R}^n$, define

$$h(x) = \limsup_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)|^{1/2} dy.$$

Then $|f(x)| \leq h(x)^2$ a.e..

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 2013-2014

Ph.D. QUALIFYING EXAMINATION

Paper 2

ANALYSIS

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination contains a total of TEN (10) questions and comprises FOUR (4) printed pages.
- 2. Answer ALL questions. The maximum score for this examination is 100 points.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

(9) Prove or disprove eight of the following statements.

- [32 marks]
- (a) If $f:[0,1] \to \mathbb{R}$ is a measurable function, then given any $\varepsilon > 0$, there exists a compact set $K \subset [0,1]$ with $|[0,1] \setminus K| < \varepsilon$ such that f is continuous on K.
- (b) If $\{f_n\}$ is a nondecreasing sequence of Riemann integrable functions on [0,1] that converges to 0 on [0,1], then $\lim_{k\to\infty} \int f_k = 0$.
- (c) If f is integrable on $[0, \pi]$, then $\lim_{n\to\infty} \int_0^{\pi} f(x) \cos nx dx = 0$.
- (d) If f is a real function on \mathbb{R} such that it is of bounded variation on [a, b] for all $-\infty < a < b < \infty$, then f is continuous everywhere except countably many points.
- (e) Let $\{f_n\}$ be a sequence of harmonic functions on the open unit disk in \mathbb{R}^2 . If $f_n \to f$ uniformly on the open unit disk, then f is also harmonic on the open unit disk.
- (f) Let U be a bounded open set in \mathbb{R}^n and $f: U \to \mathbb{R}$. If there exists a sequence of continuously differentiable functions $\{f_n\}$ that converges uniformly to f on U, then f is differentiable on U.
- (g) If f = u + iv (u and v are both real-valued functions) is an entire function such that v(z) < 1 for all z, then u must be a constant function.
- (h) If f is an analytic function on an open connected set \mathcal{D} (in the complex plane), then it is either a constant function or it will map open subsets of \mathcal{D} to open sets.
- (i) Let $\sum_{k=1}^{\infty} a_k$ be a convergent series. Then $\sum_{k=1}^{\infty} a_k \sin(k\pi x)$ converges if x is irrational.
- (j) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a continuously differentiable function such that the Jacobian metric ∇f has nonzero determinant at the origin 0. If f(0) = (1,0), then there exists $\varepsilon > 0$ such that for all $y \in \mathbb{R}^2$ with $|y (1,0)| < \varepsilon$, the equation f(x) = y has at least one solution.

— END OF PAPER —

Ph.D. Qualifying Examination 2011 January (Analysis)

(1) If $\{\phi_k : k \in \mathbb{N}\}$ is an orthonormal family of functions in a Hilbert space H with inner product $\langle \cdot, \cdot \rangle$, show the Bessel's inequality: [8 marks]

$$\sum_{k=1}^{\infty} |\langle x, \phi_k \rangle|^2 \le \langle x, x \rangle \quad \text{for all } x \in H.$$

- (2) Let $\{x_n\}$ be a bounded sequence of real numbers and let S be the collection of limit points of convergent subsequences of $\{x_n\}$. Show that S is closed. [10 marks]
- (3) Explain why there is no differentiable function f on \mathbb{R} such that $f' = \chi_{\mathbb{Q}}$ on \mathbb{R} . [8 marks]
- (4) Let $a, b, c, d \in \mathbb{R}$ such that a < b and c < d. Let $f : [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function. Consider a subset of C[a, b] (the collection of continuous functions on [a, b])

$$S = \{ \int_a^x f(t, g(t)) dt, x \in [a, b] : g \in C[a, b] \text{ such that } g(t) \in [c, d] \text{ for all } t \in [a, b]. \}$$

Show that S is precompact in C[a, b] (under the metric $d(\phi_1, \phi_2) = \sup_{x \in [a, b]} |\phi_1(x) - \phi_2(x)|$). [5 marks]

(5) Compute (and justify) one of the following:

[10 marks]

- (i) $\int_0^\infty \frac{\sin x}{x} dx$
- (ii) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$
- (6) If f is a nonnegative measurable function on \mathbb{R}^n and $\int f(x)dx < \infty$, show that

$$\lim_{\alpha \to \infty} \int_{\{x: f(x) > \alpha\}} f(x) dx = 0.$$

[7 marks]

(7) Let $1 and <math>\{f_k\}$ be a bounded sequence of functions in $L^p(\mathbb{R}^n)$ (i.e., there exists C > 0 such that $||f_k||_p \leq C$). If $f_k \to f$ a.e., show that

$$\int f_k g dx \to \int f g dx$$

for all $g \in L^q(\mathbb{R}^n)$ where 1/q = (p-1)/p.

[10 marks]

(8) Let $1 \le p < \infty$ and 1/q = (p-1)/p. Let f be a measurable function on [0,1] such that $|\int_0^1 fg dx| \le ||g||_q$ for all step functions g on [0,1].

Show that $||f||_p \leq 1$.

[10 marks]

PAGE 3 QE

Question 5 [10 marks]

Suppose f(u) is a continuous function on [-1,1]. Show that

$$\int \int_{x^2+y^2+z^2=1} f(z)ds = 2\pi \int_{-1}^{1} f(z)dz.$$

Question 6 [10 marks]

Suppose that $\sum_{n=1}^{\infty} u_n$ converges. Show that

$$\lim_{n \to \infty} \frac{u_1 + 2u_2 + 3u_3 + \dots + nu_n}{n} = 0.$$

Question 7 [10 marks]

Let $\phi(t)$ be a positive continuous function on $[0,\infty)$ and f(t,x) be a continuous function of two variables such that $|f(t,x)| \leq \phi(t)|x|$. Suppose $\int_0^\infty \phi(t) < \infty$. Show that if the function y satisfies the inequality

$$|y(t)| \le \int_0^t |f(s, y(s))| ds,$$

for all $t \in [0, \infty)$, then $y(t) \equiv 0$.

Question 8 [10 marks]

Consider the functions

$$f(x) = (\int_0^x e^{-u^2} du)^2$$

and

$$g(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt.$$

Show that $f(x) + g(x) = \frac{\pi}{4}$ for all $x \ge 0$ and hence $\lim_{x \to \infty} \int_0^x e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Answer all the questions in this paper

Question 1 [20 marks]

Suppose f is a non-negative function on \mathbb{R}^n such that $\int_{\mathbb{R}^n} f = 1$. If 0 is real number, show that

$$\int_E f^p \le |E|^{1-p}$$

for every measurable set E. Similarly show that if E is a measurable set with $0 < |E| < \infty$, then

$$\int_{E} \log f \le -|E| \log |E|.$$

Question 2 [15 marks]

Let Δ be the unit disk of the complex plane. Let f be analytic and bounded by M on Δ . If a_1, a_2, \dots, a_n are among the zeros of f, and define

$$B(z) = \prod_{k=1}^{n} \frac{z - a_k}{1 - \bar{a_k}z}.$$

- (1) Show that B is analytic on Δ and |B(z)| = 1 for |z| = 1;
- (2) Show that $|f(z)| \leq M|B(z)|$ for each $z \in \Delta$.

Question 3 [15 marks]

Show that the polynomial $P(z) = 3z^{15} + 4z^8 + 6z^5 + 19z^4 + 3z + 1$ has (i) 4 zeros for |z| < 1 and (ii) 11 zeros for 1 < |z| < 2.

Question 4 [10 marks]

Let $\{f_k\}$ be a sequence of non-negative measurable functions on a measurable set E with $|E| < \infty$. Is it true that f_k converges to 0 on E in measure as $k \to \infty$ if and only if

$$\lim_{k \to \infty} \int_E \frac{f_k}{1 + f_k} = 0?$$

If it is true, prove it. If it is not true, provide a counterexample.

NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

Qualification Examination

Analysis

January, 2010 — Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper comprises THREE (3) printed pages.
- 2. This paper consists of **EIGHT (8)** questions. Answer **ALL** of them. Marks for each question are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

- (a) If f is absolutely continuous on [a, b], then it is a difference of two continuous nondecreasing functions on [a, b].
- (b) Let $D_1 = \begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix}$, $D_2 = \begin{bmatrix} \frac{1}{3^2}, \frac{2}{3^2} \end{bmatrix} \cup \begin{bmatrix} \frac{7}{3^2}, \frac{8}{3^2} \end{bmatrix}$, $D_3 = \begin{bmatrix} \frac{1}{3^3}, \frac{2}{3^3} \end{bmatrix} \cup \begin{bmatrix} \frac{7}{3^3}, \frac{8}{3^3} \end{bmatrix} \cup \begin{bmatrix} \frac{19}{3^3}, \frac{20}{3^3} \end{bmatrix} \cup \begin{bmatrix} \frac{25}{3^3}, \frac{26}{3^3} \end{bmatrix}$.

Define D_4, \cdots similarly. Then $[0,1] \setminus \bigcup_k D_k$ is countable.

- (c) Let $\{f_n\}: \mathcal{D} = \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ be a sequence of analytic functions. Suppose there exists f on \mathcal{D} such that $f_n \to f$ uniformly on any compact subset of \mathcal{D} . Then there exists N > 0 such that f_n has the same number of zeroes (counting multiplicities) for $n \geq N$.
- (d) Given any compact set K and open set Ω , if $K \subset \Omega$, then there exists infinitely differentiable function f such that

$$\chi_K \le f \le \chi_{\Omega}.$$

- (e) Let f be an analytic function on a neighborhood of \mathcal{D} (see part (c)). If |f(z)| < 1 for |z| = 1, then there is a unique $z_0 \in \mathcal{D}$ such that $f(z_0) = z_0$.
- (f) If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then both $\sum_{k=1}^{\infty} a_k^+$ and $\sum_{k=1}^{\infty} a_k^-$ diverges. Note that $a_k^+ = \max\{a_k, 0\}$ and $a_k^- = a_k^+ a_k$.
- (g) If f is a Borel measurable function on \mathbb{R}^n , then $f = \sum_{k=1}^{\infty} a_k \chi_{A_k}$, for some $\{a_k\} \subset \mathbb{R}$ and Borel sets $\{A_k\}$ in \mathbb{R}^n .
- (h) $\int_{\mathbb{R}^2} det Df dx = 0$, if $f \in C_0^2(\mathbb{R}^2 \to \mathbb{R}^2)$, i.e., $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that it is twice continuously differentiable and with compact support.
- (7) Let Ω be an open set in \mathbb{R}^n and $f \in L^p(\Omega)$, $1 \le p < \infty$. Define [14]

$$||f||_{p,\sharp,\Omega} = \inf\{||f - a||_{L^p(\Omega)} : a \in \mathbb{R}\}.$$

Show that there exists $a \in \mathbb{R}$ such that $||f||_{p,\sharp,\Omega} = ||f - a||_{L^p(\Omega)}$.

Suppose $\{\Omega_i\}$ is a sequence of bounded domains such that $\Omega_i \subset \Omega_{i+1}$ for all i and $f \in L^p(\Omega_i)$ for all i such that $\sup_i \|f\|_{p,\sharp,\Omega_i} < \infty$, show that the sequence $\{\|f\|_{p,\sharp,\Omega_i}\}$ is a convergent sequence and

$$||f||_{p,\sharp,\cup\Omega_i} = \lim_{i \to \infty} ||f||_{p,\sharp,\Omega_i}.$$

(Note that $||f||_{p,\sharp,\Omega}$ will be defined even if $f \notin L^p(\Omega)$ provided f is measurable.)

Ph.D. Qualifying Examination 2013 Aug (Analysis)

(1) If $f \in L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$, $1 \leq p < q \leq \infty$, show that for any p < r < q, there exists [6] $0 < \lambda < 1$ such that

$$||f||_{L^r(\mathbb{R}^n)} \le ||f||_{L^p(\mathbb{R}^n)}^{\lambda} ||f||_{L^q(\mathbb{R}^n)}^{1-\lambda} \text{ for all } f \in L^r(\mathbb{R}^n).$$

- (2) (i) State Schwarz's lemma.
 - (ii) Find an 1-1 conformal mapping from \mathcal{D} onto the right half plane of \mathbb{C} (\mathcal{D} is the open unit Disc centered at the origin).
 - (iii) Let $f:\mathcal{D}\to\mathbb{C}$ be an analytic function such that $\mathrm{Re}f(z)\geq 0$ for all $z\in\mathcal{D}$ and f(0) = 1. Show that
 - (a) $\operatorname{Re} f(z) > 0$ for all $z \in \mathcal{D}$;

(b)
$$|f(z)| \le \frac{1+|z|}{1-|z|}$$
 for all $z \in \mathcal{D}$;
(c) $|f(z)| \ge \frac{1-|z|}{1+|z|}$ for all $z \in \mathcal{D}$. [15]

- (3) Let f be a continuous function on (a,b) such that $D_+f(x)=\lim_{h\to 0^+}\frac{f(x+h)-f(x)}{h}\geq 0$ exists for all $x \in (a, b)$. Show that $f(x_1) \ge f(x_0)$ for all $x_1 \ge x_0, x_0, x_1 \in (a, b)$.
- (4) Let $u:[0,\infty)\to\mathbb{R}$ be a monotone function such that $\int_0^\infty |u(r)|r^2dr<\infty$. If $f:\mathbb{R}^3\to\mathbb{R}$ [11]is such that f(x) = u(|x|) for all x. Show that
 - (i) f is measurable on \mathbb{R}^3 ;
 - (ii) $\int_{\mathbb{R}^3} f dx = 4\pi \int_0^\infty u(r) r^2 dr$. (Note that f may not be continuous and thus you cannot use Polar coordinates directly to get the answer.)
- (5) Let $1 . Suppose <math>\{a_i\}$ is a sequence of nonnegative real numbers and $\{B_{r_i}(x_i)\}$ [12]is a sequence of open balls in \mathbb{R}^n .

Let $g \in L^q(\mathbb{R}^n)$ where $\frac{1}{p} + \frac{1}{q} = 1$ and define

$$g^*(y) = \sup\{\frac{1}{|B|}\int_B |g|dx : B \text{ is any open ball containing } y\}.$$

For each i, let $B_i = B_{r_i}(x_i)$ and $3B_i = B_{3r_i}(x_i)$. Show that there exists $C_0 > 0$ such that

$$\int_{\mathbb{R}^n} \sum_i a_i \chi_{3B_i}(x) |g(x)| dx \le \int_{\mathbb{R}^n} C_0 \sum_i a_i \chi_{B_i}(x) g^*(x) dx.$$

Hence show that there exists C > 0 (independent of a_i 's) such that

$$\|\sum_{i} a_{i} \chi_{3B_{i}}\|_{L^{p}} \le C \|\sum_{i} a_{i} \chi_{B_{i}}\|_{L^{p}}.$$

(6) Prove or disprove SIX (6) of the following eight (8) statements.

- (7) Let Ω be an open connected subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$ be analytic. Is it true that f is conformal (on Ω)? Explain what "conformal" means and justify your answer. [5]
- (8) For each $z \in \mathbb{C}$, evaluate [10]

$$\int_0^1 \int_0^{2\pi} \frac{1}{re^{i\theta} + z} d\theta dr.$$

(9) Prove or disprove Six (6) of the following statements.

- [30]
- (a) If f is an entire function on \mathbb{C} , then the function $g(z) = \overline{f(\overline{z})}$ is also entire.
- (b) Let Ω be an open connected set in \mathbb{C} and $f:\Omega\to\mathbb{C}$ be an analytic function. If $\gamma_1,\gamma_2:[0,1]\to\Omega$ are piecewise differentiable such that for all $t\in[0,1]$,

$$|\gamma_1(t) - \gamma_2(t)| \le \min\{t, 1 - t\}d(t)/2 \text{ where } d(t) = \inf\{|\gamma_1(t) - z| : z \notin \Omega\},$$

then
$$\int_0^1 f(\gamma_1(t))\gamma_1'(t)dt = \int_0^1 f(\gamma_2(t))\gamma_2'(t)dt$$
.

- (c) If $\sum_{n=1}^{\infty} a_n(-1)^n$ converges, then $\sum_{n=1}^{\infty} a_n x^n$ converges to a C^{∞} function on (-1,1).
- (d) There exists a harmonic function f on $\{z = (x, y) : 0 < x^2 + y^2 < 1\}$ such that
 - (i) $\lim_{z \to z_0, |z| < 1} f(z) = 1$ for all $|z_0| = 1$;
 - (ii) $\lim_{z \to 0} f(z) = -1$.
- (e) If $f: \mathbb{R}^2 \to \mathbb{R}$ is Borel measurable, then for each $x \in \mathbb{R}$, $f_x(y) = f(x, y)$ is Borel measurable on \mathbb{R} .
- (f) The series $\sum_{k=1}^{\infty} \cos kx/k$ converges conditionally for almost all $x \in \mathbb{R}$.
- (g) Let Ω be a connected open set in \mathbb{C} . If $f:\Omega\to\mathbb{C}$ is continuous and $\gamma:[0,1]\to\Omega$ is a rectifiable curve, then the line integral $\int_{\gamma}fdz$ is defined.
- (h) Let $\{a_n\}$ be a bounded sequence of positive real numbers such that $\lim_{n\to\infty} a_{n+1}/a_n = 1$, then $\{a_n\}$ is a convergent sequence.

— END OF PAPER —

Ph.D. Qualifying Examination 2012 August (Analysis)

- (1) Let n > 1. For any M > 1, show that there exists $C_M > 1$ such that $\int_{MQ} |x|^{-1} dx \le C_M \int_Q |x|^{-1} dx$ for any cube $Q \subset \mathbb{R}^n$ where MQ is the concentric cube with M times length as Q and |x| is the Euclidean norm of x.
- (2) Let $\langle X, d \rangle$ be a compact metric space. For any $0 < \alpha < 1$, let $C^{\alpha}(X)$ be the collection of continuous functions on X such that $\sup_{x \neq y} \frac{|f(x) f(y)|}{d(x,y)^{\alpha}} < \infty$. Suppose $\{f_n\}$ is a sequence in $C^{\alpha}(X)$ such that

$$\sup_{n} (\sup_{x \neq y} \frac{|f_n(x) - f_n(y)|}{d(x, y)^{\alpha}} + \sup_{x \in X} |f_n(x)|) < \infty.$$

Show that for each $0 < \beta < \alpha$, $\{f_n\}$ has a convergent subsequence converging uniformly to a function $f \in C^{\beta}(X)$. [5]

- (3) Let $f(x) = \sqrt{x^2 + y^2 + z^2}$. Use the function ∇f on $D = \{(x, y, z) \in \mathbb{R}^3 : 1 < x^2 + y^2 + z^2 < 4\}$ to illustrate divergence theorem. (You will need to compute both integrals.) [7]
- (4) Let $f:[0,1] \to \mathbb{R}$ be measurable and $g \in L^1[0,1]$ such that $\int_{|f(x)|>t} |g(x)| dx \leq 3/t^2$ for all t>0, show that $\int_0^1 |f(x)|^p |g(x)| dx < \infty$ for 1< p<2. [6]
- (5) (i) Let $1 \leq p < \infty$ and w be a nonnegative integrable function on [0,1]. Show that given any interval $I = [a,b] \subset [0,1]$ and $\varepsilon > 0$, there exists a continuous function ϕ on [0,1] such that $\phi \geq \chi_I$ and $\int_0^1 |\phi|^p w(x) dx \leq \int_a^b w dx + \varepsilon$. Hence show that C[0,1] (space of continuous functions on [0,1]) is dense in $L_w^p[0,1]$ (with norm $(\int_0^1 |f|^p w dx)^{1/p}$). [11]

(ii) Assume that

$$\int_0^1 |f(x) - f_{av}|^p w(x) dx \le C \int_0^1 |f'(x)|^p w(x) dx \quad \text{where } f_{av} = \int_0^1 f(x) dx \tag{1}$$

for all $f \in C^1[0,1]$. Show that inequality (1) holds for all absolutely continuous functions f on [0,1] such that $f' \in L^p_w([0,1])$. [10]

(6) Let $f, g \in L^p[a, b]$, $1 . Show that the function <math>I(t) = \int_a^b |f(x) + tg(x)|^p dx$ is differentiable at t = 0 and compute its derivative. [10]

- (8) Prove or disprove Eight (8) of the following statements.
 - (a) Suppose $f: \mathbb{R} \to \mathbb{R}$ is locally Lipschitz continuous, that is, for all $x \in \mathbb{R}$, there exist $L_x, \delta_x > 0$ such that

$$|f(x) - f(y)| \le L_x |x - y|$$
 if $|y - x| < \delta_x$.

Then f(E) is measurable whenever E is measurable.

- (b) Let $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ be a continuous function. If Ω is simply connected and $\int_{\gamma} f(z)dz = 0$ for any closed contour γ in Ω , then f is analytic on Ω .
- (c) If $f: \mathbb{R} \to \mathbb{R}$ is measurable and nonnegative, then $f = \sum_{k=1}^{\infty} \frac{1}{k} \chi_{A_k}$ where A_k are measurable sets.
- (d) Let $\Omega = \{z \in \mathbb{C} : 1 < |z| < 3\}$ and f is a bounded analytic function on Ω . If there exists $z_0 \in \mathbb{C}$, $|z_0| = 2$ such that $|f(z)| \le |f(z_0)|$ for all $z \in \Omega$, then $|f(z)| = |f(z_0)|$ for all $z \in \Omega$.
- (e) If $f: \mathbb{R} \to \mathbb{R}$ is differentiable a.e., then its derivative is measurable.
- (f) If $\{a_k\}$ is a monotone sequence of real numbers that converges to 0, then $\sum_{k=1}^{\infty} a_k \cos kx$ converges for almost all $x \in \mathbb{R}$.
- (g) If a function is continuous a.e., then it is measurable.
- (h) Let $f:[a,b] \to \mathbb{R}$. If there exists M>0 such that for all $a < x_0 < x_1 \cdots < x_n < b$,

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le M,$$

then f is a function of bounded variation on [a, b].

(i) Let $\{f_n\}$, $\{g_n\}$ be two sequences of measurable functions on \mathbb{R} such that $f_n \to f$ a.e. and $|f_n| \leq g_n$ a.e. If there exists a measurable function g such that

$$\lim_{n \to \infty} \int g_n dx = \int g dx,$$

then

$$\lim_{n \to \infty} \int f_n dx = \int f dx.$$

(j) Let $f:[-1,1]\times[-1,1]\to\mathbb{R}$. If for each $x,y\in\mathbb{R}\setminus\{0\}$, there exists L such that

$$\lim_{t \to 0} |f(xt, yt) - f(-xt, -yt) - Lt|/t = 0,$$

then f is differentiable at (0,0).

Ph.D. Qualifying Examination 2011 August (Analysis)

(1) Let $\{a_n\}$ be a sequence of real numbers such that $\sum_{k=1}^{\infty} |a_k| < \infty$. If $\{b_k\}$ is a permutation of $\{a_k\}$, show that

$$\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} a_k.$$

- (2) Let f be a finite measurable function on E with $|E| < \infty$. Show that given any $\varepsilon > 0$, there exist $N \in \mathbb{N}$ and a compact set $F \subset E$ such that $|E \setminus F| < \varepsilon$ and |f(x)| < N for $x \in F$.
- (3) If $f: \mathbb{C} \to \mathbb{C}$ is bounded analytic on a deleted neighborhood of a point z_0 , show that z_0 is a removable singularity of f. [10]
- (4) Let $f_n, f : \mathbb{R} \to \mathbb{R}$ be measurable functions. If $f_n \to f$ in measure and $f_n \ge 0$ for all n, show that

$$\int f dx \le \liminf_{n \to \infty} \int f_n dx.$$

- (5) Let f be an entire function. Suppose for each $z \in \mathbb{C}$, there exists $n \in \mathbb{N}$ such that $f^{(n)}(z) = 0$. Show that f must be a polynomial. [10]
- (6) Let $1 \le p < \infty$. Show that there exists C > 0 such that

$$\left(\int |\sum_{i=1}^{\infty} a_i \chi_{2Q_i}|^p dx\right)^{1/p} \le C\left(\int |\sum_{i=1}^{\infty} |a_i| \chi_{Q_i}|^p dx\right)^{1/p}$$

for any sequence of real numbers a_i , cubes Q_i ($2Q_i$ is the cube with the same center as Q_i but twice its length). [10]

(7) (i) Let $R = [a, b] \times [c, d]$ be a rectangle in \mathbb{R}^2 . Let $u : R \to \mathbb{R}$ be a twice continuously differentiable function. Prove (without using divergence theorem) by using integration by parts or direct integration that

$$\int_{R} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right) dA = \int_{\partial R} \nabla u \cdot \vec{n} ds$$

where \vec{n} is the outward unit normal vector.

(ii) Let $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f$ on a domain Ω in \mathbb{R}^2 . If ϕ is any C^{∞} function that vanishes outside a compact subset of Ω , show that

$$\int_{\Omega} \phi f dA = -\int_{\Omega} \nabla u \cdot \nabla \phi dA.$$

PAGE 3 QE

Question 5 [10 marks]

Let h be a holomorphic function from the unit disk into itself. If $h(0) = h'(0) = \cdots = h^{(k)}(0) = 0$ for some integer k > 0, show that $|h(z)| \le |z|^{k+1}$ for all $|z| \le 1$. Further show that there exists a z_0 with $|z_0| < 1$ such that $|h(z_0)| = |z_0|^{k+1}$ if and only if $h(z) = e^{i\theta} z^{k+1}$ for some constant $\theta \in [0, 2\pi)$.

Question 6 [10 marks]

Use two methods to show that

$$\lim_{n \to \infty} \int_0^1 \frac{n^{3/2} x}{1 + n^2 x^2} dx = 0.$$

Question 7 [15 marks]

Let $\{x_n\}$ be a strictly monotone increasing sequence with $x_0 \geq 0$. Show that the series

$$\sum_{n=1}^{\infty} \left(1 - \frac{x_n}{x_{n+1}}\right)$$

converges if $\{x_n\}$ is bounded and diverges if $\{x_n\}$ is unbounded. (**Hint:** set $d_k = x_{k+1} - x_k$ for $k \ge 1$. Express the series in terms of d_n .)

Question 8 [15 marks]

Let $\varphi_1(x,y,z)$ and $\varphi_2(x,y,z)$ be continuously differentiable functions up to order 2 in the domain $\{(x,y,z): x^2+y^2+z^2<4\}$. Show that $(1) \nabla \varphi_1 \times \nabla \varphi_2 = Curl(\varphi_1 \nabla \varphi_2)$ where $CurlV = \nabla \times V$ for any vector field V and $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$ for any real valued function f; (2) the total flux $\oint_{\Sigma} A \cdot d\vec{S}$ of the vector $A = \nabla \varphi_1 \times \nabla \varphi_2$ through the surface $\Sigma := \{(x,y,z)|x^2+y^2+z^2=1\}$ is zero, where $d\vec{S}$ is the oriented surface area element.

PAGE 2 QE

Answer all the questions in this paper

Question 1 [10 marks]

- (a) Consider the complex valued function $f(x+iy)=(x^2+y^2)+(xy)i$. Is f holomorphic on \mathbb{C} ? If not, find a complex valued function g(x+iy)=u(x,y)+iv(x,y) with $v(x,y)=3x^2y-y^3$ such that h:=f+g is holomorphic on \mathbb{C} .
- (b) Let h be the holomorphic function found in (a). Let Ω be the set $\{h(z) : |z| \leq 1\}$. Find the area of Ω .

Question 2 [10 marks]

Let f be a holomorphic function on \mathbb{C} . Suppose there exists a natural number n such that the limit, $\lim_{z\to\infty}\frac{f(z)}{z^n}=M$, exists for some constant M. Show that f is a polynomial with degree less than or equal to n.

Question 3 [15 marks]

Let u be a continuous, positive, integrable function on the interval $[0, \infty)$. Suppose there exist two positive constants a and b such that $\frac{du}{dt} \leq u(a+bu)$. Show that $\lim_{t\to\infty} u = 0$.

Question 4 [15 marks]

Let $\{f_n\}$ be a sequence of non-negative measurable functions on a measurable set E. If for any $\epsilon > 0$, $\sum_{n=1}^{\infty} |\{x \in E : f_n(x) > \epsilon\}| < \infty$, show that $\lim_{n \to \infty} f_n(x) = 0$, a.e. on the set E. Is the converse also true? Justify your answer.

NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

Qualification Examination

Analysis

August, 2010 — Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper comprises **THREE** (3) printed pages.
- 2. This paper consists of **EIGHT** (8) questions. Answer **ALL** of them. Marks for each question are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

