NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 9

- 1. Find a formula for all analytic isomorphisms of
 - (i) the first quadrant of \mathbb{C} to itself;
 - (ii) the right half plane to itself;
 - (iii) the open ball |z| < 2 onto the unit ball |z| < 1.

Remark: The expressions are not unique.

[Hint: Use results from Tutorial 8 and the lecture notes:

(a) The set of analytic automorphisms of the unit ball |z| < 1 consists of mappings of the form

$$f(z) = e^{i\theta} \frac{z - \alpha}{1 - \bar{\alpha}z},$$

where $\alpha \in \mathbb{C}$ with $|\alpha| < 1$, and $\theta \in \mathbb{R}$.

(b) The set of analytic automorphisms of the UHP Im z>0 consists of mappings of the form

$$f(z) = \frac{az+b}{cz+d}$$
, with $a, b, c, d \in \mathbb{R}$, $ad-bc > 0$.]

- 2. (a) Let C denote the circle passing through the three points 1, i, 1 + i. Find the point z if z and 1 i are symmetric with respect to C.
 - (b) Find a conformal isomorphism mapping the upper half plane onto B(0,1) and sending i to 0 and ∞ to -1.

[Hint: Use the Symmetry Principle.]

- 3. (a) Suppose that C_1 and C_2 are two distinct concentric circles with centre a. Show that the only pair of points z and z^* in $\hat{\mathbb{C}}$ which are symmetric with respect to both C_1 and C_2 are a and ∞ (you may use the geometric interpretation of symmetry).
 - (b) Find two points z_1 and z_2 which are symmetric with respect to both the imaginary axis as well as the circle $|z + \frac{5}{2}| = 2$. Hence or otherwise, find a linear fractional transformation which maps the imaginary axis and the circle $|z + \frac{5}{2}| = 2$ to concentric circles centred at the origin.

[Hint: For part (b), you may need to use the result in part (a).]

4. Find a conformal isomorphism mapping the infinite vertical strip

0 < Re z < 2 to the unit ball |z| < 1.

[Hint: At an intermediate stage, we may need to map a strip to the unit ball centered at the origin.

1

5. Find an analytic isomorphism from the region $0<\arg z<\frac{\pi}{3}$ to the open ball |z-1|<2.