NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 8

1. Using the cross-ratio notation, write an equation defining a Möbius transformation that maps the half plane below the line y = 2x - 3 onto the interior of the circle |w - 4| = 2. Repeat for the exterior of the circle.

[Hint: Recall the Orientation Principle.]

Remark: The transformation is not unique.

- 2. Find a Möbius transformation that maps
 - (i) the region $\{z: |z-1| > 1\}$ onto the open ball |z-1| < 1.
 - (ii) the region $\{z: |z-1| > |z-i|\}$ onto the open ball |z-1| < 1.
- 3. Using the Orientation Principle, show that the map $f(z) = \frac{(1+z)}{(1-z)}$ is an analytic isomorphism of the upper half unit ball $\{z \in \mathbb{C} : |z| < 1, \text{ Im } z > 0\}$ onto the first quadrant of \mathbb{C} .

[Hint: What are the images of -1, 0, 1 under f? What are the images of -1, 1, i under f? Explain carefully why f is both injective and surjective with respect to the given domains.]

- 4. Let w = f(z) be the Möbius transformation that maps the points $0, \lambda, \infty$ to -i, 1, i respectively, where λ is real. For what values of λ is the upper half plane mapped onto the unit ball B(0,1)? Justify your answer.
- 5. Prove that the set of analytic automorphisms of the unit ball $B(0,1)=\{z\in\mathbb{C}:|z|<1\}$ consists of mappings of the form

$$f(z) = e^{i\theta} \frac{z - \alpha}{1 - \overline{\alpha}z}$$

where α and θ are constants such that $|\alpha| < 1$ and $\theta \in \mathbb{R}$.

[Hint: First show that if f maps 0 to 0, then $f(z) = e^{i\theta}z$. For the general case, compose f by a suitable ϕ_a in Tutorial 5 Question 3. (You may use the results in Tutorial 5 Question 3 that each

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \bar{\alpha}z},$$

with $|\alpha| < 1$, is an automorphism of B(0,1) such that $\phi_{\alpha}(\alpha) = 0$. Also, recall that the inverse of ϕ_{α} is $\phi_{-\alpha}$.