NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 7

1. Consider the linear fractional transformations

$$f(z) = \frac{2z+1}{3z+2}$$
 and $g(z) = \frac{iz+2}{z+3}$.

Find $f \circ g$, $g \circ f$ and also g^{-1} in the form of an LFT.

Answer

$$f \circ g(z) = \frac{(1+2i)z+7}{(2+3i)z+12}; \quad g \circ f(z) = \frac{(6+2i)z+4+i}{11z+7}; \quad g^{-1}(z) = \frac{-3z+2}{z-i}$$

- 2. Write the LFT $f(z) = \frac{3z-4-i}{iz-1}$ as a composition of basic transformations (i.e., the inversion, rotations, dilations, and translations).
- 3. Find a linear map (i.e. a map of the form f(z) = az + b) that maps the circle |z| = 1 onto the circle |w 5| = 3 and taking the point z = i to w = 2.

[Hint: What are the basic transformations needed?]

- 4. Write the linear fractional transformation which sends the points
 - (i) 2, 3i, 4 to $\infty, 0, 1$ respectively;
 - (ii) $0, i, \infty$ to $\infty, 0, 1$ respectively. Answer: (i) $Tz = \frac{(4-3i)z-8+6i}{2z+6i}$. (ii) $Tz = \frac{z-i}{z}$.
- 5. Find the Möbius transformation which sends the points
 - (i) -2, 2, i to -1, 1, i respectively;
 - (ii) i, -i, 0 to 1, -1, i respectively;
 - (iii) ∞ , i, 0 to 0, i, ∞ respectively.
 - (iv) $0, 1, \infty$ to -1, -i, 1 respectively.

Express your answers in (ii), (iii) and (iv) in the form $w = f(z) = \frac{az+b}{cz+d}$.

- 6. Find the fixed points in $\hat{\mathbb{C}}$ of the mappings:
 - (a) $w = \frac{z-1}{z+1}$, (b) $w = \frac{z}{z+1}$, (c) w = z+1.

[Recall that fixed points of f are points z such that f(z) = z.]

- 7. (a) Find the linear fractional transformation which has 0 and ∞ as fixed points and which maps 1+i onto 2+3i.
 - (b) Suppose the transformation $w=\frac{az+b}{cz+d}$, where $ad-bc\neq 0$, is the same as its inverse. Show that either (i) d=-a; or (ii) $a=d\neq 0$ and b=c=0.

1