NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 6

1. Does there exist a non-constant entire function f(z) such that its image $f(\mathbb{C}) \subset \mathbb{C} \setminus \{z = x + iy \in \mathbb{C} : x \geq 0 \ \& \ y \geq 0\}$?

[Hint: Riemann Mapping Theorem.]

- 2. Give an example of an entire function which is conformal on the entire complex plane $\mathbb C$ but not one-to-one on $\mathbb C$.
- 3. Show that if w = f(z) is analytic at a point z_o and f'(z) has a zero of order n at z_o , then f maps two oriented smooth curves in the z-plane intersecting at angle θ at z_o to two curves in the w-plane intersecting at the angle $(n+1)\theta$.

[Hint: Let γ_1 and γ_2 be the two oriented smooth curves intersecting at z_o . You may assume that θ is given by

$$\theta = \lim_{z \to z_o, z \in \gamma_1} \arg(z - z_o) - \lim_{z \to z_o, z \in \gamma_2} \arg(z - z_o)$$

with the understanding that one-sided limits are taken, i.e., z always lie on one of the two branches of γ_1 (or γ_2) separated by z_o . Similarly, you may assume that $f(\gamma_1)$ and $f(\gamma_2)$ intersect at $f(z_o)$ at the angle given by

$$\lim_{z \to z_o, z \in \gamma_1} \arg(f(z) - f(z_o)) - \lim_{z \to z_o, z \in \gamma_2} \arg(f(z) - f(z_o)).$$

- 4. Consider the principal logarithmic function w = Log z defined on $\mathbb{C} \setminus (-\infty, 0]$. Write w = u + iv. Describe and sketch the level curves of u and v associated to the function.
- 5. Describe the image of each of the following domains under the mapping $w=e^z$:
 - (i) the strip $0 < \text{Im } z < \pi/2$;
 - (ii) the half strip Re z < 0, $0 < \text{Im } z < \pi$;
 - (iii) the half planes Re z > 0 and Re z < 0.
- 6. Find the image of the circle |z| = 1 under the maps

(i)
$$w = \frac{1}{z - 1}$$
;

(ii)
$$w = \frac{1}{z - 2}$$
.