NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 5

1. Let $f_n(z)$, $n=1,2,\cdots$, be a sequence of functions analytic in the open ball D: |z| < R with R>0. Suppose the sequence of functions $\{f_n(z)\}$ converges uniformly to an analytic function f(z) on D. Prove that if $f(z) \neq 0$ for all z on the circle $|z| = \delta$, where $0 < \delta < R$, then there exists a positive integer N such that for all n > N, $f_n(z)$ and f(z) have the same number of zeroes (counting multiplicity) in the ball $|z| < \delta$.

[Hint: Rouché's Theorem]

- 2. Use the open mapping theorem to give a quick proof of the following familiar facts: If f is analytic in a domain D, then f is identically constant in D if any of the following conditions holds:
 - (a) Re f(z) is constant in D.
 - (b) Im f(z) is constant in D.
 - (c) |f(z)| is constant in D.
- 3. Fix any complex constant α such that $|\alpha| < 1$. Consider the function

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}.$$

- (i) Show that ϕ_{α} maps the unit circle C: |z| = 1 to itself.
- (ii) Show also that ϕ_{α} is an analytic function from the open ball B(0,1) into itself.

[Hint: Use (i).]

- (iii) Show that ϕ_{α} is an analytic automorphism of B(0,1).
- (iv) Show that the inverse of ϕ_{α} on B(0,1) is $\phi_{-\alpha}$, i.e., show that

$$\phi_{\alpha} \circ \phi_{-\alpha}(z) = z = \phi_{-\alpha} \circ \phi_{\alpha}(z), \text{ for all } z \in B(0,1).$$

- (v) Show that $\phi'_{\alpha}(0) = 1 |\alpha|^2$ and $\phi'_{\alpha}(\alpha) = (1 |\alpha|^2)^{-1}$. [Remark: The $\phi'_{\alpha}s$ are very useful analytic automorphisms on B(0,1), which we will see in the next question and in a number of occasions later. An important property of ϕ_{α} is that $\phi_{\alpha}(\alpha) = 0$ (check it).]
- 4. (Another generalization of Schwarz's lemma).

Let f(z) be an analytic function on the open ball $B(0,1) = \{z \in \mathbb{C} : |z| < 1\}$ such that |f(z)| < 1 for all |z| < 1. Show that

$$|f'(0)| \le 1 - |f(0)|^2$$
.

[Hint: Let $\alpha = f(0)$. Consider the composite function $g = \phi_{\alpha} \circ f$, where ϕ_{α} is as in Question 3. Then apply Schwarz's lemma to the function. You may also need to use the results in Question 3.]

1