NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 10

1. Find a conformal isomorphism mapping the semi-infinite strip x > 1, -1 < y < 1 to the unit ball |w| < 1.

[Hint: Recall that the function $f(z)=\sin z$ is a conformal isomorphism from the semi-infinite strip $-\frac{\pi}{2} < x < \frac{\pi}{2}$ to the upper half plane Im z>0.] Remark: The transformation is not unique.

- 2. Show that the function $u(x,y) = 2xy + e^x \cos y$ is a harmonic function on \mathbb{R}^2 and find a harmonic conjugate to u(x,y). [Answer: $v(x,y) = y^2 + e^x \sin y x^2 + C$.]
- 3. Suppose that f(z) = u + iv is analytic on a domain D. Show that u + v, $u^2 v^2$ and uv are harmonic on D. What about $u^2 + v^2$? [You may use freely the fact that the real and imaginary parts of an analytic function are harmonic.]
- 4. Show that ϕ_x and ϕ_y are harmonic on a domain D if ϕ is harmonic on D. [Hint: Locally, write ϕ as the real part of an analytic function.]
- 5. Consider the function

$$u(x,y) = \frac{1}{2}\ln(x^2 + y^2), \quad z = x + iy \in \mathbb{C} \setminus \{0\}.$$

- (i) Show that u is harmonic on $\mathbb{C} \setminus \{0\}$.
- (ii) Show that u has no harmonic conjugate on $\mathbb{C} \setminus \{0\}$.

[Hint: First show that if v is a harmonic conjugate of u on $\mathbb{C} \setminus \{0\}$, then u + iv = Log z + iC on $\mathbb{C} \setminus (-\infty, 0]$ for some real constant C.]