NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

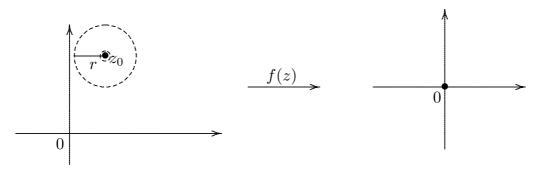
MA4247 Complex Analysis II

Lecture Notes Part II

Chapter 2. Further properties of analytic functions

2.1. Local/Global behavior of analytic functions; The Identity Theorem

Defnition. A point $z \in \mathbb{C}$ is said to be a **zero** of f if $f(z_0) = 0$. A point z_0 is said to be an **isolated zero** of f if $f(z_0) = 0$, and there exists some r > 0 such that $f(z) \neq 0$ for all z satisfying $0 < |z - z_0| < r$.



Proposition 2.1.1. Suppose that f is analytic at z_0 and $f(z_0) = 0$, then either

- (i) z_0 is an isolated zero of f, or
- (ii) f is identically zero in some open ball centered at z_0 (i.e., $\exists \delta > 0$ such that f(z) = 0 for all $z \in B(z_0, \delta)$).

[Roughly speaking, zeros of non-constant analytic functions are always isolated.]

Proof. Since f is analytic at z_0 , there exists an open set, which can be taken to be an open ball $B(z_0, r)$ with r > 0, such that f is differentiable (and hence analytic) everywhere in $B(z_0, r)$. By Taylor's theorem, we have

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 for all $|z - z_0| < r$, where $a_k = \frac{f^{(k)}(z_0)}{k!}$. (1)

If all the Taylor coefficients a_k 's are zero, then by (1), f(z) = 0 for all $|z - z_0| < r$, and thus (ii) holds. Otherwise, let m be the smallest positive integer such that $a_m \neq 0$. Then by (1), we have

$$f(z) = a_m (z - z_0)^m + a_{m+1} (z - z_0)^{m+1} + \cdots$$

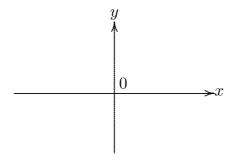
$$= (z - z_0)^m \left[a_m + a_{m+1} (z - z_0) + a_{m+1} (z - z_0)^2 + \cdots \right]$$

$$= (z - z_0)^m \phi(z) \quad \text{for all } |z - z_0| < r,$$
(2)

where $\phi(z) := a_m + a_{m+1}(z - z_0) + a_{m+1}(z - z_0)^2 + \cdots$. The power series $\phi(z)$ has the same radius of convergence as the Taylor series of f(z) about z_0 , which is $\geq r$, hence it represents an analytic (and hence continuous) function on $B(z_0, r)$, with $\phi(z_0) = a_m \neq 0$. By continuity, there exists $\delta > 0$ such that $\phi(z) \neq 0$ for all $|z - z_0| < \delta$. See tutorial 1 for details of argument.

Hence, there exists $\delta > 0$ such that $\phi(z) \neq 0$ for all $z \in B(z_0, \delta)$. Shrinking δ if necessary, we may assume that $\delta < r$ (so that both (2) and (3) hold on $B(z_0, \delta)$). Together with the fact that $(z-z_0)^m \neq 0$ if $z \neq z_0$, it follows from (2) that $f(z) \neq 0$ for all $z \in B'(z_0, \delta) = B(z_0, \delta) \setminus \{z_0\}$, and thus (i) holds. Thus, either (i) or (ii) has to hold, and this finishes the proof of the proposition.

Exercise. Find an infinitely differentiable non-constant function from \mathbb{R} to \mathbb{R} which has a non-isolated zero.



Solution. Consider the function

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & \text{if } x > 0; \\ 0 & \text{if } x \le 0. \end{cases}$$

As a consequence of the above, we have the following theorem:

Theorem 2.1.2. (Locally zero implies globally zero)

Suppose that f is analytic in a domain D and $f \equiv 0$ on a non-empty open subset of D. Then $f \equiv 0$ on D.

Proof. Suppose f is analytic on D and $f \equiv 0$ on a non-empty open subset U of D. Fix a point $z_0 \in U$ so that $f(z_0) = 0$. Take any other point $w \in D$, we want to show that f(w) = 0. Since D is connected, there exists a polygonal line $L = L_1 + \cdots + L_k$ in D joining z_0 to w, i.e., the initial point of L_1 is z_0 and the terminal point of L_k is w.

First we show that $f \equiv 0$ along L_1 . Let the terminal point of L_1 be z_1 (without loss of generality, we may assume $z_1 \neq z_0$) so that L_1 may be parametrized by

$$L_1: \gamma(t) = z_0 + t(z_1 - z_0), \quad 0 \le t \le 1.$$

Consider the set

$$I := \{ s \in [0, 1] \mid f(\gamma(t)) = 0 \text{ for all } 0 \le t \le s \}.$$
 (*)

Since $f(z_0) = 0$, it follows that $0 \in I$, and thus $I \neq \emptyset$. Let $s_o := \sup I$.

Claim 1: $s_o > 0$.

Proof of Claim 1. Since U is open, there exists an open ball $B(z_0, r) \subset U$ with r > 0. Then $f \equiv 0$ on $B(z_0, r)$. Then for all $0 \le t \le \frac{r}{2|z_1 - z_0|}$, we must have $f(\gamma(t)) = 0$, since for such t,

$$|\gamma(t) - z_0| = |z_0 + t(z_1 - z_0) - z_0|$$

$$= |t| \cdot |z_1 - z_0|$$

$$\leq \frac{r}{2|z_1 - z_0|} \cdot |z_1 - z_0| = \frac{r}{2} < r.$$
(1)

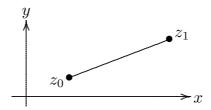
Therefore, $s_o \ge \frac{r}{2|z_1 - z_0|} > 0$.

Claim 2: $f(\gamma(t)) = 0$ for all $0 \le t \le s_o$.

Proof of Claim 2. For any $t < s_o = \sup I$, there exists s > t such that $s \in I$. Then $f(\gamma(t)) = 0$ since t < s (see (*)). Thus, $f(\gamma(t)) = 0$ for all $0 < t \le s_o$. It remains to show that $f(\gamma(s_o)) = 0$. Since f is continuous at $\gamma(s_o)$ and $\gamma(t) \to \gamma(s_o)$ as $t \to s_o^-$, it follows that

$$f(\gamma(s_o)) = \lim_{t \to s_o^-} f(\gamma(t)) = \lim_{t \to s_o^-} 0 = 0.$$

(Note $t \to s_o^-$ implies that $t < s_o$ and thus $f(\gamma(t)) = 0$.) This finishes the proof of Claim 2.



Claim 3: $s_o = 1$.

Proof of Claim 3. We prove the claim by contradiction. Suppose $s_o < 1$, so that by Claim 1, $0 < s_o < 1$. By Claim 2, $f(\gamma(t)) = 0$ for all $0 \le t \le s_o$. Also, for any r > 0, $B(\gamma(s_o), r)$ contains some point $\gamma(t)$ with $0 \le t < s_o$ (and thus $f(\gamma(t)) = 0$) (Exercise, find an explicit t using a calculation similar to (1)). Thus, $\gamma(s_o)$ is a zero but not an isolated zero of f. Hence by Proposition 2.1.1, there exists $\delta > 0$ such that $f \equiv 0$ on $B(\gamma(s_o), \delta)$. Shrinking δ if necessary, we may assume that $B(\gamma(s_o), \delta) \subset D$. Then for all $s_o \le t \le s_o + \frac{\delta}{2|z_1 - z_0|}$, one can check that $\gamma(t) \subset B(\gamma(s_o), \delta)$ and thus $f(\gamma(t)) = 0$ (Exercise). Together with Claim 2, it follows that $f(\gamma(t)) = 0$ for all $0 \le t \le s_o + \frac{\delta}{2|z_1 - z_0|}$, and thus $\sup I \ge s_o + \frac{\delta}{2|z_1 - z_0|}$, contradicting that $\sup I = s_o$. Therefore, we must have $\sup I = 1$, and this finishes the proof of Claim 3.

Completion of proof of Theorem 2.1.2. From Claim 2 and Claim 3, it follows that $f \equiv 0$ on L_1 . In particular, z_1 is a zero of f, but not an isolated zero of f. Then since z_1 is also the initial point of L_2 , one can repeat the above argument to show that $f \equiv 0$ on L_2 . By repeating the argument again and again, one can show that $f \equiv 0$ on the entire L, and thus f(w) = 0. Since w is an arbitrary point of D, it follows that $f \equiv 0$ on D. This finishes the proof of the theorem.

Exercise: The usual definition for D to be connected is that if $D = V_1 \cup V_2$ where $V_1 \cap V_2 = \emptyset$ and both V_1 and V_2 are open, then either V_1 or V_2 is the empty set (you cannot partition a connected set into two disjoint non-empty open sets). Use this definition to prove the theorem.

Definition 2.1.3. Consider a set $T \subset \mathbb{C}$. A point z_0 (not necessarily in T) is said to be an **accumulation point** of T if $T \cap B(z_0, r) \setminus \{z_0\} \neq \emptyset$ for any r > 0, i.e., any open ball centered at z_0 contains a point in T other than z_0 .

Remark 2.1.4. By considering a sequence of open balls $B(z_0, r_n)$ with r_n decreasing to 0, one can find a sequence of distinct points $\{z_n\}$ in T such that $\lim_{n\to\infty} z_n = z_0$ (Exercise).

Example. Let $T = B(0,1) \setminus \{0\}$. Then 0 is an accumulation point of T (note that $0 \notin T$).

Theorem 2.1.5. (Zeros do not have accumulation point in D if f is not identically zero) Let f be an analytic function in a domain D, and let $T \subset D$ be such that T has an accumulation point z_0 in D. If $f \equiv 0$ on T, then $f \equiv 0$ on D.

Proof. Since $z_0 \in D$ is an accumulation point of T, it follows from Remark 2.1.4 that one can find a sequence of distinct points $\{z_n\} \subset T$ such that $\lim_{n\to\infty} z_n = z_0$. Then by continuity of f and since each $z_n \in T$, we have

$$f(z_0) = f(\lim_{n \to \infty} z_n) = \lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} 0 = 0.$$

Thus z_0 is a zero of f. But z_0 is not an isolated zero of f (Exercise). Thus by Proposition 2.1.1, there exists $\delta > 0$ such that f(z) = 0 for all $z \in B(z_0, \delta)$. Shrinking δ if necessary, we may assume that $B(z_0, \delta) \subset D$. Thus by Theorem 2.1.2, $f \equiv 0$ on D.

Remark.

- (i) The result is not necessarily true if $z_0 \notin D$.
- (ii) Examples of a set T in a domain D with an accumulation point in D are given below:
- (1) T is a non-empty open subset of D;
- (2) T is a curve or line segment contained in D;
- (3) T consists of a sequence of distinct points $\{z_n\} \subset D$ which converges to a point $z_0 \in D$. For example, D = B(0,2) and $T = \{1/n : n \in \mathbb{N}\}$ has the accumulation point 0 in D.

Theorem 2.1.6 (Identity theorem for analytic functions)

Let f and g be analytic in a domain D. If $f \equiv g$ on a subset $T \subset D$ which has an accumulation point in D (such as an non-empty open subset of D or a line segment in D), then $f \equiv g$ on D.

Proof: Consider f-g on D. Since $f-g\equiv 0$ on $T\subset D$, and T has an accumulation point D, it follows from Theorem 2.1.5 that $f-g\equiv 0$ on D, hence $f\equiv g$ on D.

Example 2.1.7. Consider the functions $f(z) = \sin(2z)$ and $g(z) = 2 \sin z \cos z$.

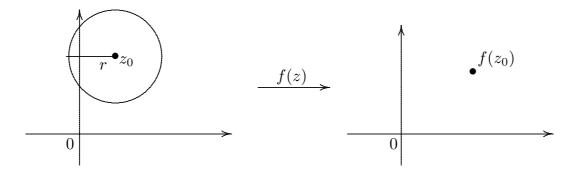
§2.2. Maximum modulus principle and applications

Theorem 2.2.1.(Gauss Mean Value Theorem)

Suppose that f is analytic everywhere within and on the circle $C: \ |z-z_0|=r.$ Then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

Remark. The formula says that the value of f at the centre of the circle is the arithmetic mean of the values of f on the circle.



Proof. By the Cauchy integral formula,

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

Take the parametrization of C given by $\gamma(\theta) = z_0 + re^{i\theta}$, $0 \le \theta \le 2\pi$, so that $\gamma'(\theta) = ire^{i\theta}$. Hence

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{z_0 + re^{i\theta} - z_0} \cdot ire^{i\theta} d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

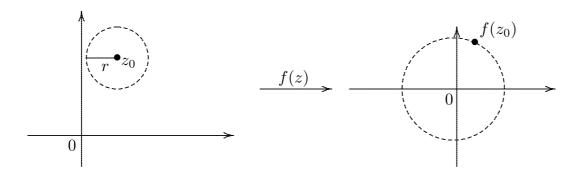
Example 2.2.2. Let $f(z) = 2z^2 + z + 1$. Then

$$f(0) = 1 = \frac{1}{2\pi} \int_0^{2\pi} 2e^{2i\theta} + e^{i\theta} + 1 \, d\theta$$

Proposition 2.2.3. (Local version of maximum modulus principle)

Suppose that f is analytic on an open ball $B(z_0, r) := \{z \in \mathbb{C} : |z - z_0| < r\}$ centered at z_0 and of radius r > 0. If $|f(z)| \le |f(z_0)|$ for each point $z \in B(z_0, r)$, then $f(z) \equiv f(z_0)$ on $B(z_0, r)$.

Remark. The above can be rephrased as "If f is analytic on $B(z_0, r)$ and |f(z)| attains its maximum in $B(z_0, r)$ at z_0 , then f is constant on $B(z_0, r)$ ".



Proof. Suppose f satisfies the conditions of the Proposition, and let $0 < \rho < r$. Consider the circle $|z_1 - z_0| = \rho$. By Gauss' MVT,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{i\theta}) d\theta$$

$$\Longrightarrow |f(z_0)| = \left| \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{i\theta}) d\theta \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{i\theta})| d\theta.$$
(2)

On the other hand, by the assumption,

$$|f(z_0 + \rho e^{i\theta})| \le |f(z_0)|, \quad 0 \le \theta \le 2\pi$$
 (3)

$$\Longrightarrow \int_0^{2\pi} |f(z_0 + \rho e^{i\theta})| d\theta \le \int_0^{2\pi} |f(z_0)| d\theta = 2\pi |f(z_0)| \tag{4}$$

$$\Longrightarrow |f(z_0)| \ge \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{i\theta})| d\theta. \tag{5}$$

By (2) and (5),

$$|f(z_0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{i\theta})| d\theta$$

$$\Longrightarrow |f(z_0)| \cdot \frac{1}{2\pi} \int_0^{2\pi} 1 d\theta = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{i\theta})| d\theta$$

$$\Longrightarrow \frac{1}{2\pi} \int_0^{2\pi} (|f(z_0)| - |f(z_0 + \rho e^{i\theta})|) d\theta = 0.$$
 (6)

By assumption, the integrand

$$(|f(z_0)| - |f(z_0 + \rho e^{i\theta})|) \ge 0 \text{ for all } 0 \le \theta \le 2\pi.$$
 (7)

If there is a value of θ for which the inequality in (7) is strict, then by continuity, we have strict inequality for an open interval of θ and

$$\int_0^{2\pi} (|f(z_0)| - |f(z_0 + \rho e^{i\theta})|) d\theta > 0,$$

which is a contradiction to (6). Hence we must have

$$(|f(z_0) - |f(z_0 + \rho e^{i\theta})|) = 0,$$
 for all $0 \le \theta \le 2\pi$,

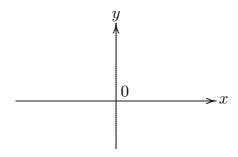
i.e., $|f(z)| = |f(z_0)|$ for all z on the circle $|z - z_0| = \rho$. By letting ρ vary from 0 to r, it follows that $|f(z)| = |f(z_0)|$ for all $z \in B(z_0, r)$. Since f is an analytic function such that |f(z)| is constant on $B(z_0, r)$, it follows that that f(z) itself is constant on $B(z_0, r)$ (see e.g. [Churchill, 7th ed., p. 74, Question 7]). \square

Theorem 2.2.4. (Maximum modulus principle)

If f is analytic and not constant on the domain D, then |f(z)| has no maximum value in D.

Proof: We prove the theorem by contradiction. Suppose that |f(z)| attains its maximum at some point $z_0 \in D$. Since D is open, there exists r > 0 such that $z_0 \in B(z_0, r) \subset D$. Then $|f(z)| \leq |f(z_0)|$ for all $z \in B(z_0, r)$. Thus by the local version of the MMP (Proposition 2.2.3), f is constant on $B(z_0, r)$. Together with the identity theorem for analytic functions (Theorem 2.1.6), it follows that f(z) is constant on D, contradicting the assumption that f is non-constant on D. Thus, |f(z)| has no maximum value in D. \square

Remark. The maximum modulus does not hold in the real case! Consider the function $f(x) = 1 - x^2$, -1 < x < 1. Clearly, the function is non-constant and differentiable on (-1,1). But the maximum value of |f(x)| is attained at the interior point x = 0 when f(0) = 1.



Corollary 2.2.5. Let $R \subset \mathbb{C}$ be a closed bounded set whose interior is a domain. Suppose f is continuous on R and analytic and not constant in the interior of R. Then the maximum value of |f(z)| in R occurs on the boundary of R and never in the interior.

Proof. Note that |f(z)| is a real-valued continuous function on the closed and bounded region R. Then it follows from the Extreme Value Theorem that |f(z)| attains its maximum value at some point z_0 of R. By the maximum modulus principle, such z_0 cannot lie in the interior of R. Therefore, z_0 must lie in the boundary of R.

Example 2.2.6. (minimum modulus principle) Let $R \subset \mathbb{C}$ be a closed bounded set whose interior is a domain. Suppose f is continuous on R and analytic and not constant in the interior of R. If $f(z) \neq 0$ for any $z \in R$, then |f(z)| attains its minimum value at the boundary of R but not in the interior of R. (To be done in tutorial).

Example 2.2.7. Consider the function $f(z) = e^z$ on the closed disk $\overline{B(1,2)} = \{z \in \mathbb{C} : |z-1| \leq 2\}$. Then the maximum and minimum values of |f(z)| in $\overline{B(1,2)}$ occurs on the boundary, and not on the interior. (Exercise: Find the points where the maximum and the minimum values for |f(z)| occurs).

An important application of the MMP is the following

Theorem 2.2.8. (Schwarz's Lemma)

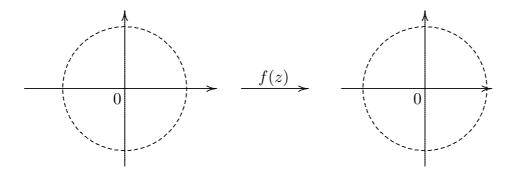
Consider the unit ball $B(0,1) := \{z \in \mathbb{C} : |z| < 1\}$. Suppose that f is analytic on B(0,1) such that

- (i) $|f(z)| \le 1$ for each $z \in B(0,1)$, and
- (ii) f(0) = 0.

Then

- (a) $|f(z)| \leq |z|$ for each $z \in B(0,1)$, and
- (b) $|f'(0)| \le 1$.

Moreover, if the equality in (b) holds or the equality in (a) holds for at least one non-zero point in B(0,1), then $f(z) \equiv az$ on B(0,1) for some complex constant a with |a| = 1 (that is, $f(z) = e^{i\alpha}z$ is a rotation by some angle α about the origin).



Proof. (Key step:) Let $g(z) := \frac{f(z)}{z}$. Clearly, g(z) analytic on $B(0,1) \setminus \{0\}$, and it has an isolated singular point at z = 0. From (ii), we have f(0) = 0. By Taylor's theorem,

$$f(z) = 0 + f'(0)z + \frac{f''(0)}{2!}z^2 + \cdots$$
, for $|z| < 1$.

Thus the Laurent series of g(z) at z = 0 is given by

$$g(z) = \frac{1}{z} \left[f'(0)z + \frac{f''(0)}{2}z^2 + \cdots \right]$$
$$= f'(0) + \frac{f''(0)}{2}z + \cdots, \quad 0 < |z| < 1.$$

In particular, z=0 is a removable singular point of g(z), and we can define g(0)=f'(0) so that the extended function g(z) becomes analytic on B(0,1) (see (1.6.3)). Now, since $|f(z)| \leq 1$ for $z \in B(0,1)$, we see that

$$|g(z)| \le \frac{1}{|z|}, \text{ for } 0 < |z| < 1.$$
 (1)

Now for any $z_1 \in B(0,1)$, we choose an r such that $|z_1| < r < 1$. The function g(z) is analytic on the closed disk $\overline{B(0,r)} := \{z \in \mathbb{C} : |z| \le r\}$

and $|g(z)| \leq \frac{1}{r}$ on the circle |z| = r, which is the boundary of $\overline{B(0,r)}$. Hence, by the MMP,

$$|g(z_1)| \le \frac{1}{r}. (2)$$

Then by taking the limit as $r \to 1^-$, one gets from (2) that

$$|g(z_1)| = \lim_{r \to 1^-} |g(z_1)| \le \lim_{r \to 1^-} \frac{1}{r} = 1.$$
 (3)

Hence, upon renaming z_1 as z (since z_1 was an arbitrary point in B(0,1)), we have

$$|g(z)| \le 1 \quad \text{for all } |z| < 1. \tag{4}$$

Therefore, $|f(z)| \leq |z|$ for 0 < |z| < 1. The inequality clearly holds when z = 0, since f(0) = 0. Thus, $|f(z)| \leq |z|$ for all |z| < 1, which gives (a). Recall that g(0) = f'(0). Thus by (4), we also have $|f'(0)| = |g(0)| \leq 1$, which gives (b). Finally, if the equality in (b) holds (i.e., |f'(0)| = |g(0)| = 1) or the equality in (a) holds at some non-zero point in B(0,1) (which implies |g(z)| = 1 for some non-zero $z \in B(0,1)$), then together with (3), it follows |g(z)| attains its maximum value 1 at an interior point $z_0 \in B(0,1)$. Thus by MMP, g(z) is a constant function on B(0,1), i.e., $g(z) \equiv a = e^{i\alpha}$ on B(0,1). Note also that $|a| = |g(z_0)| = 1$. Thus, $f(z) \equiv az$ on $B(0,1) \setminus \{0\}$ with |a| = 1. Since f(0) = 0, the equality also holds at z = 0. This finishes the proof of Schwarz's Lemma. \square