NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II

Homework 3 (due 26 Oct)

- 1. Suppose f is an analytic function on the unit ball B(0,1) such that $f(0)=\frac{1}{2}$ and |f(z)|<1 for all |z|<1.
 - (a) Show that

$$\left| \frac{f(z) - \frac{1}{2}}{1 - \frac{f(z)}{2}} \right| \le |z| \text{ for all } z \in B(0, 1).$$

- (b) Deduce that $f(z) \neq 0$ for all z satisfying $|z| < \frac{1}{2}$. [For part (a), you may use freely the following fact: For any α with $|\alpha| < 1$, the function $\phi_{\alpha}(z) = \frac{z \alpha}{1 \overline{\alpha}z}$ is an analytic automorphism of B(0,1) such that $\phi_{\alpha}(\alpha) = 0$.]
- 2. (a) Let z_1, z_2, z_3, z_4 be four distinct complex numbers. Suppose $(z_1, z_2; z_3, z_4) = 1 + i$. Find the value of $(\bar{z}_1 + i, \bar{z}_2 + i; \bar{z}_3 + i, \bar{z}_4 + i)$. Justify your answer. (Note that \bar{z} is just the complex conjugate of z).
 - (b) Consider the domain $D = \{z = x + iy \in \mathbb{C} : y < x^2 \text{ and } z \neq -i\}$. Does there exist a non-constant entire function F such that $F(\mathbb{C}) \subset D$? Justify your answer.
 - (c) Suppose T is a Möbius transformation such that $T(0) = \infty$ and $T(\infty) = 0$. Is it true that T is of the form $T(z) = \frac{a}{z}$ for some non-zero complex constant a? Justify your answer.