NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II

Homework 2 (due 21 Sep)

1. Fix any complex constant α such that $|\alpha| < 1$. Consider the function

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}.$$

- (i) Show that ϕ_{α} maps the unit circle C: |z| = 1 to itself.
- (ii) Show also that ϕ_{α} is an analytic function from the open ball B(0,1) into itself.

[Hint: Use (i).]

- 2. Let f be a non-constant entire function such that |f(z)| = 1 for all complex numbers z satisfying |z| = 1.
 - (i) Show that $f(z) \in B(0,1)$ for all $z \in B(0,1)$.
 - (ii) Show that for any complex number $\alpha \in B(0,1)$, there exists a complex number $z \in B(0,1)$ such that $f(z) = \alpha$. (Hint: Use part (i), Question 1 above and Question 8 of Tutorial 2.)
- 3. Find the number of zeros of the polynomial $p(z) = z^4 + 3z^3 + 2z + 3$, counting multiplicity, in the annulus 2 < |z| < 4. Justify your answer.
- 4. Find the number of roots of the equation $e^{-z} + z^2 9 = 0$ in the right half plane Re z > 0. Justify your answer carefully.