NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

2009/2010 Semester I MA4247 Complex Analysis II Tutorial 6 Selected answers and solutions

1. Does there exist a non-constant entire function f(z) such that its image $f(\mathbb{C}) \subset \mathbb{C} \setminus \{z = x + iy \in \mathbb{C} : x \geq 0 \& y \geq 0\}$? [Hint: Riemann Mapping Theorem.]

Answer: No. The domain $D=\mathbb{C}\setminus\{z=x+iy:x\geq 0\ \&\ y\geq 0\}$ is simply connected. By the Riemann Mapping Theorem, there exists an analytic automorphism ϕ from D to the ball B(0,1). Then the composite function $g=\phi\circ f$ is an entire function since composition of two analytic functions is analytic. Moreover, $g(\mathbb{C})=\phi\circ f(\mathbb{C})=g(f(\mathbb{C}))\subset g(D)\subset B(0,1)$. In particular, |g(z)|<1 for all $z\in\mathbb{C}$. Hence g is an entire and bounded. By Liouville's Theorem, g must be a constant function. Thus there exists a complex constant c such that $g(z)=\phi\circ f(z)=c$ for all $z\in\mathbb{C}$. By composing both sides by ϕ^{-1} , we get $\phi^{-1}\circ\phi\circ f(z)=\phi^{-1}(c)\implies\phi^{-1}(\phi(f(z)))=f(z)=\phi^{-1}(c)$ for all $z\in\mathbb{C}$. Hence f must be a constant function on \mathbb{C} .

2. Give an example of an entire function which is conformal on the entire complex plane \mathbb{C} but not one-to-one on \mathbb{C} .

Answer: An example is the exponential function $f(z) = e^z$. Clearly, $f'(z) = e^z \neq 0$ everywhere on \mathbb{C} , and thus f is conformal on \mathbb{C} . But $f(0) = f(2\pi i) = 1$, so f is not one-to-one on \mathbb{C} .

3. Show that if w = f(z) is analytic at a point z_o and f'(z) has a zero of order n at z_o, then f maps two oriented smooth curves in the z-plane intersecting at angle θ at z_o to two curves in the w-plane intersecting at the angle (n+1)θ. [Hint: Let γ₁ and γ₂ be the two oriented smooth curves intersecting at z_o. You may assume that θ is given by

$$\theta = \lim_{\substack{z \to z_o \\ z \in \gamma_1}} \arg(z - z_o) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} \arg(z - z_o)$$

with the understanding that one-sided limits are taken, i.e., z always lie on one of the two branches of γ_1 (or γ_2) separated by z_o . Similarly, you may assume that $f(\gamma_1)$ and $f(\gamma_2)$ intersect at $f(z_o)$ at the angle given by

$$\lim_{\substack{z \to z_o \\ z \in \gamma_1}} \arg(f(z) - f(z_o)) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} \arg(f(z) - f(z_o)).$$

Answer: Remark: there is a typo in the hint, γ_1 and γ_2 should be interchanged under the limits, similarly in the answer below:

Since f'(z) has a zero of order n at z_o , it follows that

$$f'(z_o) = \dots = f^{(n)}(z_o) = 0$$
, and $f^{(n+1)}(z_o) \neq 0$.

From Taylor's theorem and the above conditions on the derivatives of f at z_o , we may write

$$f(z) = f(z_o) + a_{n+1}(z - z_o)^{n+1} + \cdots$$

on the ball $|z - z_o| < r$ for some r > 0, where the Taylor coefficient $a_n \neq 0$. In turn, this means that we may write

$$f(z) = f(z_0) + (z - z_0)^{n+1} \phi(z)$$

on the ball $|z - z_o| < r$ for some analytic function $\phi(z)$ such that $\phi(z_o) \neq 0$ (the argument is similar to Tutorial 1 Question 4). Then

$$\lim_{\substack{z \to z_o \\ z \in \gamma_1}} \arg(f(z) - f(z_o)) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} \arg(f(z) - f(z_o))$$

$$= \lim_{\substack{z \to z_o \\ z \in \gamma_1}} \arg((z - z_o)^{n+1} \phi(z)) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} \arg((z - z_o)^{n+1} \phi(z))$$

$$= \lim_{\substack{z \to z_o \\ z \in \gamma_1}} (n+1) \arg(z - z_o) + \lim_{\substack{z \to z_o \\ z \in \gamma_1}} \arg(\phi(z)) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} (n+1) \arg(z - z_o) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} \arg(\phi(z))$$

$$= \lim_{\substack{z \to z_o \\ z \in \gamma_1}} (n+1) \arg(z - z_o) + \arg(\phi(z_o)) - \lim_{\substack{z \to z_o \\ z \in \gamma_2}} (n+1) \arg(z - z_o) - \arg(\phi(z_o))$$

$$= (n+1)\theta.$$

Here we used the fact that $\phi(z)$ is continuous at z_o and $\phi(z_o) \neq 0$ implies that we can make a consistent choice (branch) of $arg(\phi(z))$ for z near z_o so that $arg(\phi(z))$ is a continuous function in z, and thus

$$\lim_{\substack{z \to z_o \\ z \in \gamma_1}} \arg(\phi(z)) = \lim_{\substack{z \to z_o \\ z \in \gamma_2}} \arg(\phi(z)) = \arg(\phi(z_o)).$$

4 Consider the principal logarithmic function w = Log z defined on $\mathbb{C} \setminus \{0\}$. Write w = u + iv. Describe and sketch the level curves of u and v associated to the function.

Answer: Recall that $u + iv = w = \text{Log } z = \ln|z| + i\text{Arg } z$. Thus we have $u = \ln|z|$ and v = Arg z. For the vertical line $u = u_o$ with fixed u_o , the corresponding level curve is given by $\ln|z| = u_o \implies |z| = e^{u_o}$, which is a

circle centered at 0 and of radius e^{u_o} . For the horizontal line $v = v_o$ with fixed v_o satisfying $-\pi < v_o \le \pi$, the horizontal line $v = v_o$ corresponds to Arg $z = v_o$, which is a half line (ray) making an angle v_o with the positive real axis.

- 5. Describe the image of each of the following domains under the mapping $w = e^z$:
 - (i) the strip $0 < \text{Im } z < \pi/2$;
 - (ii) the half strip Re z < 0, $0 < \text{Im } z < \pi$;
 - (iii) the half planes Re z > 0 and Re z < 0.

Answer: Write z = x + iy. Note that $w = e^z = e^{x+iy} = e^x \cdot e^{iy}$. Thus $|w| = e^x$ and $\arg w = y$.

- (i) For the strip $0 < \text{Im } z = y < \pi/2$, the corresponding region in the w-plane is thus $0 < \arg w < \pi/2$, which is the first quadrant.
- (ii) For the strip x < 0, $0 < y < \pi$, the corresponding region is ln|w| < 0, $0 < \arg w < \pi$ or equivalently, the upper half unit disk centred at the origin given by $|w| < 1,0 < \arg w < \pi$.
- (iii) For the half plane x > 0, the corresponding region is $\ln|w| > 0$ or equivalently |w| > 1, i.e., the exterior of the unit circle centred at the origin. For the half plane x < 0, the corresponding region is $\ln|w| < 0$ or equivalently 0 < |w| < 1, i.e., the punctured unit ball $B(0,1) \setminus \{0\}$.
- 6. Find the image of the circle |z|=1 under the maps

(i)
$$w = \frac{1}{z - 1}$$
;

(ii)
$$w = \frac{1}{z - 2}$$
.

Answer:

(i) $w=1/(z-1)\Longrightarrow z=(1+w)/w.$ $|z|=1\Longrightarrow |(1+w)/w|=1\Longrightarrow |1+w|=|w|.$ Write w=u+iv. Then

$$|1+w| = |w| \iff |1+w|^2 = |w|^2$$

$$\iff |(u+1)+iv|^2 = |u+iv|^2$$

$$\iff (u+1)^2 + v^2 = u^2 + v^2$$

$$\iff u = -\frac{1}{2}.$$

which a vertical straight line through $u = -\frac{1}{2}$.

(ii)
$$w=1/(z-2)\Longrightarrow z=(2+w)/w.$$
 $|z|=1\Longrightarrow |(1+2w)/w|=1\Longrightarrow |1+2w|=|w|.$ Write $w=u+iv.$ Then

$$|1 + 2w| = |w| \iff |1 + 2w|^2 = |w|^2$$

$$\iff |1 + 2(u + iv)|^2 = |u + iv|^2$$

$$\iff |(2u + 1) + iv|^2 = |u + iv|^2$$

$$\iff (2u + 1)^2 + v^2 = u^2 + v^2$$

$$\iff 3u^2 + 3v^2 + 4u + 1 = 0$$

$$\iff (u + \frac{2}{3})^2 + v^2 = \frac{1}{9},$$

which is a circle centred at (-2/3,0) and of radius 1/3.