NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA4247 Complex Analysis II Tutorial 5

Selected answers and solutions

1. Let $f_n(z)$, $n = 1, 2, \dots$, be a sequence of functions analytic in the open ball D: |z| < R with R > 0. Suppose the sequence of functions $\{f_n(z)\}$ converges uniformly to an analytic function f(z) on D. Prove that if $f(z) \neq 0$ for all z on the circle $|z| = \delta$, where $0 < \delta < R$, then there exists a positive integer N such that for all n > N, $f_n(z)$ and f(z) have the same number of zeroes (counting multiplicity) in the ball $|z| < \delta$.

[Hint: Rouché's Theorem]

Answer: We apply Rouché's theorem to the function f(z) with perturbation $g_n(z) = f_n(z) - f(z)$ on the interior of the circle $|z| = \delta$. Sine the circle $|z| = \delta$ is a closed and bounded set, by the Extreme Value Theorem, the continuous function |f(z)| attains a minimum value on $|z| = \delta$, which is necessarily positive, since $f(z) \neq 0$ everywhere on $|z| = \delta$. Let $\min_{|z| = \delta} |f(z)| = \epsilon > 0$. Since f_n converges uniformly to f on D, there exists N such that $|f_n(z) - f(z)| < \frac{\epsilon}{2}$ for all n > N and all $z \in D$. So

$$|g_n(z)| = |f_n(z) - f(z)| < \frac{\epsilon}{2} < \epsilon \le |f(z)| \quad \forall |z| = \delta.$$

Then by Rouche's theorem, f(z) and $f(z) + g_n(z) = f_n(z)$ have the same number of zeros in $|z| < \delta$ for all n > N.

- 2. Use the open mapping theorem to give a quick proof of the following familiar facts: If f is analytic in a domain D, then f is identically constant in D if any of the following conditions holds:
 - (a) Re f(z) is constant in D.
 - (b) Im f(z) is constant in D.
 - (c) |f(z)| is constant in D.

Answer: In (a), $f(D) \subset \{iy : y \in \mathbb{R}\}$, the imaginary axis. In (b), $f(D) \subset \mathbb{R}$, the real axis. In (c), $f(D) \subset C$ for some circle C : |z| = r, where $r \geq 0$. In all cases, the image f(D) cannot be open in \mathbb{C} , Hence, by the open mapping theorem, f must be constant.

3. Fix any complex constant α such that $|\alpha| < 1$. Consider the function

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}.$$

- (i) Show that ϕ_{α} maps the unit circle C: |z| = 1 to itself.
- (ii) Show also that ϕ_{α} is an analytic function from the open ball B(0,1) into itself.

[Hint: Use (i).]

- (iii) Show that ϕ_{α} is an analytic automorphism of B(0,1).
- (iv) Show that the inverse of ϕ_{α} on B(0,1) is $\phi_{-\alpha}$, i.e., show that

$$\phi_{\alpha} \circ \phi_{-\alpha}(z) = z = \phi_{-\alpha} \circ \phi_{\alpha}(z), \text{ for all } z \in B(0,1).$$

(v) Show that
$$\phi'_{\alpha}(0) = 1 - |\alpha|^2$$
 and $\phi'_{\alpha}(\alpha) = (1 - |\alpha|^2)^{-1}$.

[Remark: The $\phi'_{\alpha}s$ are very useful analytic automorphisms on B(0,1), which we will see in the next question and in a number of occasions later. An important property of ϕ_{α} is that $\phi_{\alpha}(\alpha) = 0$ (check it).]

Answer:

(i) If |z| = 1, then

$$|1 - \bar{\alpha}z|^2 - |z - \alpha|^2$$

$$= (1 - \bar{\alpha}z)\overline{(1 - \bar{\alpha}z)} - (z - \alpha)\overline{(z - \alpha)}$$

$$= (1 - \bar{\alpha}z)(1 - \alpha\bar{z}) - (z - \alpha)(\bar{z} - \bar{\alpha})$$

$$= 1 - \bar{\alpha}z - \alpha\bar{z} + z\bar{z}\alpha\bar{\alpha} - (z\bar{z} - \alpha\bar{z} - \bar{\alpha}z + \alpha\bar{\alpha})$$

$$= 1 + |z|^2|\alpha|^2 - |z|^2 - |\alpha|^2$$

$$= (1 - |z|^2)(1 - |\alpha|^2)$$

$$= 0.$$

Thus, if
$$|z| = 1$$
, then $|\phi_{\alpha}(z)| = \frac{|z - \alpha|}{|1 - \bar{\alpha}z|} = 1$.

Alternatively, note that if z lies on the unit circle $|z|=1, z\bar{z}=1$ so that

$$|z - \alpha| = |z||1 - \alpha \bar{z}| = |1 - \bar{\alpha}z|,$$

so that $|\phi_{\alpha}(z)| = 1$.

(ii) ϕ_{α} is not analytic only at $z=1/\overline{\alpha}$, which is outside B(0,1), since

$$\left|\frac{1}{\overline{\alpha}}\right| = \frac{1}{|\alpha|} > 1.$$

Thus ϕ_{α} is analytic and clearly non-constant on the closed unit ball $|z| \leq 1$ (say, $\phi(\alpha) = 0$, but $\phi_{\alpha}(z) \neq 0$ if $z \neq \alpha$). Since $|\phi_{\alpha}(z)| = 1$ on the boundary circle |z| = 1, so by the MMP, $|\phi_{\alpha}(z)| < 1$ for |z| < 1.

(iii) By (ii), ϕ_{α} is analytic from B(0,1) to itself. To show that ϕ_{α} is an analytic automorphism on B(0,1), it remains to show that ϕ_{α} is one-to-one and onto.

One-to-one: Let $z_1, z_2 \in B(0,1)$. Then

$$\phi_{\alpha}(z_{1}) = \phi_{\alpha}(z_{2})$$

$$\Rightarrow \frac{z_{1} - \alpha}{1 - \overline{\alpha}z_{1}} = \frac{z_{2} - \alpha}{1 - \overline{\alpha}z_{2}}$$

$$\Rightarrow (z_{1} - \alpha)(1 - \overline{\alpha}z_{2}) = (z_{2} - \alpha)(1 - \overline{\alpha}z_{1})$$

$$\Rightarrow z_{1} - \alpha\overline{\alpha}z_{2} = z_{2} - \alpha\overline{\alpha}z_{2}$$

$$\Rightarrow (z_{1} - z_{2})(1 - |\alpha|^{2}) = 0$$

$$\Rightarrow z_{1} = z_{2},$$

since $|\alpha| < 1$. Hence ϕ_{α} is one-to-one on B(0,1).

Onto: For |w| < 1, we solve for the equation

$$f(z) = w \Leftrightarrow \frac{z - \alpha}{1 - \overline{\alpha}z} = w$$
$$\Leftrightarrow z = \frac{w + \alpha}{1 + \overline{\alpha}w}.$$

Note that if |w| < 1, then $\left| \frac{w + \alpha}{1 + \bar{\alpha}w} \right| < 1$ (by a calculation similar to (i), try it). Hence if $w \in B(0,1)$, then $z = \frac{w + \alpha}{1 + \bar{\alpha}w} \in B(0,1)$ and $f(\frac{w + \alpha}{1 + \bar{\alpha}w}) = w$. Hence ϕ_{α} is onto.

Alternatively, (iii) can be deduced from (iv) since if the composition of two functions $f \circ g$ is one-to-one and onto, then f is one-to-one and g is onto, we can use this to deduce that $\rho_{\alpha}(z)$ is one-to-one and onto on B(0,1).

(iv) Note that $\phi_{-\alpha} = \frac{z+\alpha}{1+\bar{\alpha}z}$. Then check directly that

$$\phi_{\alpha} \circ \phi_{-\alpha}(z) = z = \phi_{-\alpha} \circ \phi_{\alpha}(z), \quad \text{for all } z \in B(0,1).$$

(v) By direct calculation,

$$\phi_{\alpha}'(z) = \frac{1 - |\alpha|^2}{(1 - \overline{\alpha}z)^2}$$

and the result follows.

4. (Another generalization of Schwarz's lemma). Let f(z) be an analytic function on the open ball $B(0,1) = \{z \in \mathbb{C} : |z| < 1\}$ such that |f(z)| < 1 for all |z| < 1. Show that

$$|f'(0)| \le 1 - |f(0)|^2$$
.

[Hint: Let $\alpha = f(0)$. Consider the composite function $g = \phi_{\alpha} \circ f$, where ϕ_{α} is as in Question 3. Then apply Schwarz's lemma to the function. You may also need to use the results in Question 3.]

Answer: Let $\alpha = f(0)$, so that $|\alpha| < 1$. Then consider the function $g(z) = \phi_{\alpha} \circ f(z) = \phi_{\alpha}(f(z))$ for |z| < 1. By Question 3, we know that ϕ_{α} is an analytic automorphism on B(0,1). Note that f is an analytic function mapping B(0,1) to B(0,1). Thus, $g(z) = \phi_{\alpha} \circ f(z)$ is a well-defined analytic function mapping B(0,1) to B(0,1). In particular, |g(z)| < 1 for all |z| < 1. Now

$$g(0) = \phi_{\alpha}(f(0)) = \phi_{\alpha}(\alpha) = \frac{\alpha - \alpha}{1 - \bar{\alpha}\alpha} = 0.$$

Thus by Schwarz's lemma, we have $|g'(0)| \leq 1$. By the Chain Rule, we have $g'(0) = \phi'_{\alpha}(f(0)) \cdot f'(0)$. Therefore, we have

$$|g'(0)| = |\phi_{\alpha}(f(0))| \cdot |f'(0)| \le 1$$

$$\implies |\phi'_{\alpha}(f(0))| \cdot |f'(0)| \le 1$$

$$\implies |\phi'_{\alpha}(\alpha)| \cdot |f'(0)| \le 1$$

$$\implies |(1 - |\alpha|^2)^{-1}| \cdot |f'(0)| \le 1$$

$$\implies |f'(0)| \le |1 - |\alpha|^2| = 1 - |\alpha|^2 = 1 - |f(0)|^2,$$

which gives the result.