NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

2009/2010 Semester I MA4247 Complex Analysis II Tutorial 4

Selected answers and solutions, note that details for questions 3,4,5,6,7,8 and 9 should be filled in yourself

1. Let $h(z) = \frac{1}{2}(z + \frac{1}{z})$. Prove that if w is any complex number **not** in the closed interval [-1,1], then there is exactly one z in the unit open ball $B(0,1) = \{z \in \mathbb{C} : |z| < 1\}$ such that h(z) = w.

Hint: Fix a w not in [-1,1], and let

$$f(z) = h(z) - w.$$

Show that as z traces around the unit circle C: |z| = 1 once in the positive direction f(C) does not pass through the origin in the w plane and has winding number 0 about the origin. Then apply the argument principle.

Solution: Fix a w not in [-1, 1], and let

$$f(z) = h(z) - w.$$

We will show that as z traces around the unit circle C:|z|=1 once in the positive direction f(C) does not pass through the origin in the w plane and has winding number 0 about the origin. Then as f(z) has only one simple pole at z=0 inside C, by the argument principle, this implies that it also has a simple zero inside C which gives us the required conclusion.

Parametrize C by $z = \cos \theta + i \sin \theta$, $0 \le \theta \le 2\pi$. Then $f(z) = h(z) - w = \cos \theta - w$, where $0 \le \theta \le 2\pi$ and since $w \notin [-1,1]$, $f(z) \ne 0$ for $z \in C$. Now as θ varies from 0 to 2π , f(z) varies along the horizontal line segment from -w+1 to -w-1 and back to -w+1 again. This clearly has winding number 0.

2. Use Rouché's theorem to show that the polynomial $z^5 + 3z^2 + 1$ has exactly two zeroes in the disk |z| < 1 counting multiplicity. Solution: Use $f(z) = 4z^2$ and $g(z) = z^6 - 1$. On |z| = 1, $|g(z)| = |z^6 - 1| \le 1$

 $|z^6|+|1|=2<4=|f(z)|$. By Rouché's theorem, number of zeros of z^5+3z^2+1 is equal to number of zeroes of $4z^2$ inside |z|<1 which is two.

- 3. Prove that the equation $z^3 + 9z + 27 = 0$ has no roots in the disk |z| < 2. Solution: Use f(z) = 27 and $g(z) = z^3 + 9z$.
- 4. Find the number of roots of the equation $6z^4 + z^3 2z^2 + z 1 = 0$ in the disk |z| < 1.

Solution: Use $f(z) = 6z^4$ and $g(z) = z^3 - 2z^2 + z - 1$.

5. Give an example to show that the conclusion of Rouché's theorem may be false if the strict inequality |g(z)| < |f(z)| is replaced by $|g(z)| \le |f(z)|$ on C.

Solution: Use f(z) = z and g(z) = -z with $\gamma : |z| = 1$ for example. Another example: Use f(z) = z and g(z) = 1 with $\gamma : |z| = 1$.

6. Prove that all the roots of the equation $z^6 - 5z^2 + 10 = 0$ lie in the annulus 1 < |z| < 2.

Solution: For |z| = 1, use f(z) = 10 and $g(z) = z^6 - 5z^2$; for |z| = 2, use $f(z) = z^6$ and $g(z) = -5z^2 + 10$.

- 7. Let $a, b \in \mathbb{C}$, and $n \in \mathbb{Z}^+$. Show that $az^n + be^z$ has n zeroes counting multiplicity in the interior of the unit circle |z| = 1 if |a| > |b|e. Solution: Use $f(z) = az^n$ and $g(z) = be^z$. Note that if z = x + iy, then $|e^z| = e^x$, so that for z on the unit circle |z| = 1, $x \le 1$ so $|e^z| \le e^1 = e$.
- 8. Prove that the equation $z = 2 e^{-z}$ has exactly one root in the right half plane. Why must this root be real?

Solution: Use the right half semi-circular contour C_R of radius R (with diameter given by the line segment from -Ri to Ri) and let R approach ∞ . Use f(z) = z - 2 and $g(z) = -e^{-z}$ for this contour. Note that if $R \ge 4$, then for $z \in C_R$, |z-2| is the distance of z from the point 2, which is ≥ 2 . To obtain an upper bound for |g(z)|, adapt the argument from the previous question. Finally, use intermediate value theorem (restricting the function $h(z) = z - 2 + e^{-z}$ to the positive real axis) to deduce there is at least one positive real root.

9. Determine the number of zeroes of the polynomial $3z^7 + 5z - 1$ counting multiplicity which lie in the annulus 1 < |z| < 2.

Solution: Use f(z) = 5z and $g(z) = 3z^7 - 1$ to show that there is one zero of $3z^7 + 5z - 1$ in the disk |z| < 1 (and none on |z| = 1). Then use $f(z) = 3z^7$

 $3z^7 + 5z - 1$ in the disk |z| < 1 (and none on |z| = 1). Then use $f(z) = 3z^7$ and g(z) = 5z - 1 to show that there are 7 zeroes of $3z^7 + 5z - 1$ in |z| < 1.

Therefore, there are 7-1=6 zeroes of $3z^7 + 5z - 1$ in 1 < |z| < 2.