NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

2009/2010 Semester I MA4247 Complex Analysis II

Tutorial 10

Suggested answers and solutions:

1. Find a conformal isomorphism mapping the semi-infinite strip x > 1, -1 < y < 1 to the unit ball |w| < 1.

[Hint: Recall that the function $f(z)=\sin z$ is a conformal isomorphism from the upper semi-infinite strip $-\frac{\pi}{2} < x < \frac{\pi}{2}, y > 0$ to the upper half plane Im z > 0.]

Solution: Using $z_1=f_1(z)=z-1$, we first translate the semi-infinite strip to the left by 1 unit, so that the strip is mapped to the strip $S_1: x>0, -1< y<1$. Next using $z_2=f_2(z_1)=e^{i\pi/2}z_1=iz_1$, then S_1 becomes another strip $S_2: -1< x<1, y>0$. Then using the dilation $z_3=f_3(z_2)=\frac{\pi}{2}z_2$, S_2 becomes the strip $S_3: -\frac{\pi}{2}< x<\frac{\pi}{2}, y>0$. Now using $z_4=f_3(z_3)=\sin z_3$, S_3 is mapped to the upper half plane Im $z_4>0$. Finally using the LFT $w=f_4(z_4)=\frac{z_4-i}{z_4+i}$, the upper half plane is mapped to B(0,1). Thus, the required conformal isomorphism is given by

$$w = f_4 \circ f_3 \circ f_2 \circ f_1(z) = \frac{\sin \frac{\pi}{2} i(z-1) - i}{\sin \frac{\pi}{2} i(z-1) + i}.$$

Remark: The transformation is not unique. So you may get a different answer. An alternative method is to first map the semi-infinite strip to the semi-infinite strip x < 0, $0 < y < \pi$, map that to the upper half ball by the map e^z and then follow the steps of Q3, tutorial 8 and so on.

2. Show that the function $u(x,y) = 2xy + e^x \cos y$ is a harmonic function on \mathbb{R}^2 and find a harmonic conjugate to u(x,y).

[Answer:
$$v(x, y) = y^2 + e^x \sin y - x^2 + C$$
.]

3. Suppose that f(z) = u + iv is analytic on a domain D. Show that u + v, $u^2 - v^2$ and uv are harmonic on D. What about $u^2 + v^2$?

[You may use freely the fact that the real and imaginary parts of an analytic function are harmonic.]

Answer: f - if = (u + v) + i(v - u), $f^2 = (u^2 - v^2) + i(2uv)$ are analytic, hence u + v, $u^2 - v^2$ and uv are harmonic. $u^2 + v^2$ is not harmonic, for example, take u = x, v = y. Then $\phi = u^2 + v^2 = x^2 + y^2$, but $\phi_{xx} + \phi_{yy} = 1 + 1 = 2 \neq 0$.

4. Show that ϕ_x and ϕ_y are harmonic on a domain D if ϕ is harmonic on D.

[Hint: Locally, write ϕ as the real part of an analytic function.]

Answer: At each point $z \in D$ which is open, there exists an open ball $B(z_o, r) \subset D$ with r > 0. Since $B(z_o, r)$ is a simply connected domain, the harmonic function $\phi = \text{Re }(f)$ for some analytic function f on $B(z_o, r)$. Write $f = \phi + iv$, where v is the imaginary part of f. Then $f' = \phi_x + iv_x$. By CR equations, $v_x = -\phi_y$. Thus, $f' = \phi_x - i\phi_y$ is analytic (recall that derivatives of analytic functions are analytic). Thus, its real part ϕ_x and its imaginary part $-\phi_y$ are harmonic. Note that $-\phi_y$ is harmonic implies readily that ϕ_y is also harmonic in $B(z_o, r)$. By varying z_o in D, it follows that ϕ_x and ϕ_y are harmonic in D.

Alternative solution: Let $g = \phi_x - i\phi_y$ on D. Show that g is analytic on D by noting that ϕ_x and $-\phi_y$ have continuous first order partial derivatives, and satisfy the CR-equations. Then ϕ_x and $-\phi_y$ are harmonic, since they are real and imaginary parts of an analytic function.

5. Consider the function

$$u(x,y) = \frac{1}{2}\ln(x^2 + y^2), \quad z = x + iy \in \mathbb{C} \setminus \{0\}.$$

- (i) Show that u is harmonic on $\mathbb{C} \setminus \{0\}$.
- (ii) Show that u has no harmonic conjugate on $\mathbb{C} \setminus \{0\}$.

[Hint: First show that if v is a harmonic conjugate of u on $\mathbb{C} \setminus \{0\}$, then u + iv = Log z + iC on $\mathbb{C} \setminus (-\infty, 0]$ for some real constant C.]

Answer: (i) Direct calculation.

(ii) We prove (ii) by contradiction. Suppose u has a harmonic conjugate v on $\mathbb{C}\setminus\{0\}$, so that f=u+iv is analytic on $\mathbb{C}\setminus\{0\}$. Consider the function Log z on the domain $D=\mathbb{C}\setminus(-\infty,0]$. Note that $\text{Re }(\text{Log }z)=\ln|z|=\frac{1}{2}\ln(x^2+y^2)=(x,y)$ on D. Thus, the real parts of f and Log z are the same on D. Thus, the real part of the analytic function f(z)-Log z is zero on the domain D, and thus f(z)-Log z is a constant function (and purely imaginary) on D. Write $f(z)-\text{Log }z\equiv iC$ on D for some real constant C. Consider the two circular arcs $\gamma_1:e^{i\theta},\ 0\leq\theta\leq\pi,\ \text{and}\ \gamma_2:e^{i\theta},\ -\pi<\theta\leq0$

in the upper and lower half plane respectively, which intersect at z = -1. Then since f is continuous at z = -1,

$$\lim_{\substack{z \to -1 \\ z \in \gamma_1}} f(z) = \lim_{\substack{z \to -1 \\ z \in \gamma_2}} f(z) = f(-1)$$

$$\implies \lim_{\substack{z \to -1 \\ z \in \gamma_1}} \operatorname{Log} z + iC = \lim_{\substack{z \to -1 \\ z \in \gamma_2}} \operatorname{Log} z + iC$$

$$\implies \lim_{\substack{z \to -1 \\ z \in \gamma_1}} \ln|z| + i\operatorname{Arg}(z) + iC = \lim_{\substack{z \to -1 \\ z \in \gamma_2}} \ln|z| + i\operatorname{Arg}(z) + iC$$

$$\implies \lim_{\substack{t \to -1 \\ t \in \gamma_1}} \ln|e^{i\theta}| + i\operatorname{Arg}(e^{i\theta}) + iC = \lim_{\substack{t \to -1 \\ \theta \to -\pi +}} \ln|e^{i\theta}| + i\operatorname{Arg}(e^{i\theta}) + iC$$

$$\implies 0 + i\pi + iC = 0 - i\pi + iC,$$

which is a contradiction. Thus, f does not have a conjugate on $\mathbb{C} \setminus \{0\}$.