MA3501 Mid-term Test

Answer Sheet

	Seat Number:		
Matriculation	Number:		
Name (Block	Letters) :		
Tut Gp (or da	ay & time):		

Write down (in ink) your answers in the boxes provided.

Question	Answer		
	(i)	(ii)	(iii)
1	a=	b=	
2	a=		
3			
Total			

MA3501 Mid-term Test

Answer all the questions and enter your answer (in ink only) on the answer sheet. Please hand in only your answer sheet.

Duration: 1 Hour

[2 marks]

1. Let
$$A = \begin{pmatrix} a & -1 \\ b & 1 \end{pmatrix}$$

Given that A has an eigenvalue 2 of multiplicity 2.

- (i) Find the value of a.
- (ii) Find the value of b. [2 marks]
- (iii) Let x(t) be the solution of the differential equation

$$x'(t) = Ax(t), \quad x(1) = \begin{pmatrix} 2e^2 \\ e^2 \end{pmatrix}$$

find the value of x(0). [3 marks]

2. Given that
$$A = \begin{pmatrix} 4 & a \\ 3 & 4 \end{pmatrix}$$
 has an eigenvalue $4-3i$.

- (i) Find the value of a. [2 marks]
- (ii) Find the eigenvector corresponding to 4-3i. [2 marks]
- (iii) Let x(t) be the solution of the differential equation

$$x'(t) = Ax(t), \quad x(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

find the value of $x(\pi)$. [3 marks]

3. Let
$$A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

- (i) Find the eigenvalues of A. [2 marks]
- (ii) Find the eigenvectors of A. [2 marks]

(iii) Consider the differential equation
$$x'(t) = Ax(t) + {3 \choose 9}$$

find real numbers a and b such that $x(t) = \begin{pmatrix} a \\ b \end{pmatrix}$

is a solution of the differential equation. [2 marks]