NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION 2013-2014

MA1101R Linear Algebra I

May 2014 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your matriculation/registration number only. **Do not write your name.**
- 2. This examination paper contains a total of FOUR (4) questions and comprises FOUR (4) printed pages.
- 3. Answer ALL questions. Each question carries 25 marks.
- 4. This is a CLOSED BOOK examination. (For Non-H3 students:) You are allowed to bring in two A4-sized help sheets which must be handwritten. Both sides of the A4-sized paper can be used. (For H3 students:) You are not allowed to bring in any help sheets. Formula sheets will be provided for you instead.
- 5. Calculators may be used. However, you should lay out systematically the various steps in the calculations

PAGE 2 MA1101R

Question 1

(a) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 1 & 3 \\ -2 & 2 & 1 \end{pmatrix}.$$

- (i) Find the inverse of \boldsymbol{A} .
- (ii) Hence or otherwise, solve the following linear system:

$$\begin{cases} x - 2y - z = 2 \\ 2x + y + 3z = 5 \\ -2x + 2y + z = -5 \end{cases}$$

(iii) Find four elementary matrices E_1, E_2, E_3, E_4 such that

$$E_4E_3E_2E_1A$$

is a matrix in row-echelon form.

(b) Let

$$u_1 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$

(i) Show that $S = \{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 .

(ii) Let
$$\boldsymbol{w} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
. Find $(\boldsymbol{w})_S$.

(iii) Let T be a linear operator on \mathbb{R}^3 such that

$$T(\boldsymbol{u_1}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad T(\boldsymbol{u_2}) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad T(\boldsymbol{u_3}) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Find the standard matrix for T.

Hint: You may assume that
$$\begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 7 & -4 & 5 \\ -3 & 2 & -2 \end{pmatrix}$$
.

Question 2

(a) Consider the following linear system:

$$\begin{cases} x + y = 4 \\ 2x + y = 4 \\ 3x + y = 6 \\ 4x + y = 10. \end{cases}$$

- (i) Find a least squares solution to the linear system.
- (ii) Use your answer in (i) to find the projection of $\begin{pmatrix} 4\\4\\6\\10 \end{pmatrix}$ onto the column

space of
$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix}$$
.

- (iii) In general, suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ is an inconsistent linear system. Prove that for all $k \neq 0$, $k \in \mathbb{R}$, the linear system $\mathbf{A}\mathbf{x} = k\mathbf{b}$ is also inconsistent. If \mathbf{v} is a least squares solution for $\mathbf{A}\mathbf{x} = \mathbf{b}$, is $k\mathbf{v}$ a least squares solution for $\mathbf{A}\mathbf{x} = k\mathbf{b}$? Justify your answer.
- (b) Let $W = \{(a, b, c, d, e) \mid a = 2b, c = d 2e, a + 2d e = 0\}.$
 - (i) Show that W is a subspace of \mathbb{R}^5 .
 - (ii) Find a basis and determine the dimension of W.
 - (iii) Find a subspace V of \mathbb{R}^5 with dimension 3 such that $W + V = \mathbb{R}^5$. Justify your answer. (Express you answer for V in terms of a linear span.)

Question 3

(a) What is the condition that must be satisfied by a, b and c such that the linear system below is consistent?

$$\begin{cases} x_1 + x_2 + 2x_3 = a \\ x_1 + x_3 = b \\ 2x_1 + x_2 + 3x_3 = c. \end{cases}$$

(b) Let $S = \{v_1, v_2, v_3\}$, where

$$\boldsymbol{v_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{v_2} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{v_3} = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix}.$$

- (i) You may assume that S is a basis for span(S). Using Gram-Schmidt Process and S, find an orthogonal basis for span(S).
- (ii) Extend the basis obtained in (i) to an orthogonal basis for \mathbb{R}^4 .
- (c) Using the method of matrix diagonalization, solve the following recurrence relation. (**Note:** No marks will be given if you solve by other methods.)

3

$$a_n = \frac{1}{2}a_{n-1} + \frac{1}{2}a_{n-2}$$
 with $a_0 = 0$, $a_1 = 1$.

Hint: You do not need to compute P explicitly.

PAGE 4 MA1101R

Question 4

(a) Let \boldsymbol{A} be the following matrix:

$$\begin{pmatrix} 1 & 0 & 2 & -1 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix}.$$

- (i) Find a basis for the row space of \boldsymbol{A} .
- (ii) How many solutions does $\mathbf{A}^T \mathbf{x} = \mathbf{0}$ have? Justify your answer.
- (iii) If A is the standard matrix for a linear transformation T, find a basis for the kernel of T and determine $\operatorname{nullity}(T)$.
- (b) Let \boldsymbol{B} be the following matrix:

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}.$$

- (i) Show that the characteristic equation of \mathbf{B} is $\lambda^3 5\lambda^2 + 2\lambda + 8 = 0$. It is known that -1 is one of the eigenvalues of \mathbf{B} . Find all other eigenvalues of \mathbf{B} .
- (ii) For each eigenvalue λ of \boldsymbol{B} , find a basis for the eigenspace E_{λ} .
- (iii) Is \boldsymbol{B} diagonalizable? Justify your answer. If \boldsymbol{B} is diagonalizable, write down a matrix \boldsymbol{P} such that $\boldsymbol{P}^{-1}\boldsymbol{B}\boldsymbol{P}$ is a diagonal matrix \boldsymbol{D} . Write down the matrix \boldsymbol{D} corresponding to your choice of \boldsymbol{P} .
- (iv) Determine if the following matrix is diagonalizable. Justify your answer.

$$\begin{pmatrix} 2016 & 2 & 3 \\ 1 & 2016 & 1 \\ 2 & -2 & 2015 \end{pmatrix}.$$