NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 1 EXAMINATION 2013-2014

MA1101R Linear Algebra I

November 2013 — Time allowed: 2 hours

Examiner: Dr. Ng Kah Loon

INSTRUCTIONS TO CANDIDATES

- 1. Please write your matriculation/registration number only. **Do not write your name.**
- 2. This examination paper contains a total of **FOUR** (4) questions and comprises **THREE** (3) printed pages.
- 3. Answer **ALL** questions. Each question carries 25 marks.
- 4. This is a **CLOSED BOOK** examination. You are allowed to bring in two A4-sized help sheets which must be handwritten. Both sides of the A4-sized paper can be used.
- 5. Non-graphing, non-programmable calculators may be used. However, you should lay out systematically the various steps in the calculations

PAGE 2 MA1101R

Question 1

Let

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix}, \quad \mathbf{b_1} = \begin{pmatrix} 3 \\ -3 \\ 3 \\ -3 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 2 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

- (i) Show that $\mathbf{v} = (1, 1, 2, 2)^T$ is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b_1}$.
- (ii) Find a basis for the nullspace of \boldsymbol{A} .
- (iii) Using your answers in (i) and (ii), write down the solution set for $Ax = b_1$.
- (iv) Show that $\mathbf{A}\mathbf{x} = \mathbf{b_2}$ is inconsistent.
- (v) Find **two different** least squares solutions x_1 and x_2 , for the linear system $Ax = b_2$. Verify that $Ax_1 = Ax_2$.
- (vi) If $b_3 \in \mathbb{R}^4$ does not belong to the column space of A, is it possible that $Ax = b_1 + b_3$ is consistent? Justify your answer.

Question 2

Let

$$\mathbf{X} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2 \end{pmatrix}.$$

- (i) Find X^{-1} by Gaussian Elimination. (You may assume that X^{-1} exists.)
- (ii) Find det(X) and thus write down the matrix adj(X).
- (iii) If \mathbf{X} is the standard matrix for a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, find the formula of the transformation $S: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T \circ S$ satisfies $(T \circ S)(\mathbf{x}) = \mathbf{x}$ for all nonzero vectors $\mathbf{x} \in \mathbb{R}^3$.
- (iv) Find all eigenvalues λ of \boldsymbol{X} and for each λ , find a basis for E_{λ} , the eigenspace of \boldsymbol{X} associated with λ .
- (v) Is X diagonalizable? If it is, find a matrix P that diagonalizes X.
- (vi) Let \mathbf{Y} be a diagonalizable matrix of order n. Suppose $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of \mathbf{Y} with eigenspaces $E_{\lambda_1}, E_{\lambda_2}, \ldots, E_{\lambda_k}$ and $S_{\lambda_1}, S_{\lambda_2}, \ldots, S_{\lambda_k}$ are the corresponding bases for $E_{\lambda_1}, E_{\lambda_2}, \ldots, E_{\lambda_k}$. Prove that

$$E_{\lambda_1} + E_{\lambda_2} + \dots + E_{\lambda_k} = \mathbb{R}^n.$$

(**Remark:** For two subspaces V and W of \mathbb{R}^n , V+W is defined as

$$V+W=\{\boldsymbol{v}+\boldsymbol{w}\mid\boldsymbol{v}\in V,\boldsymbol{w}\in W\}.)$$

PAGE 3 MA1101R

Question 3

Let

$$u_1 = (1, 1, 0, 2),$$
 $u_2 = (0, -2, 1, 1),$ $u_3 = (0, 1, 1, 2)$
 $S = \{u_1, u_2, u_3\},$ $V = \text{span}(S).$

- (i) Prove that S is a basis for V.
- (ii) Let $\boldsymbol{w} = (3, -1, -1, 3)$. Determine if \boldsymbol{w} belongs to V. If it does, find $(\boldsymbol{w})_S$.
- (iii) Apply Gram-Schmidt Process to S to obtain an orthogonal basis T for V.
- (iv) Find $(\boldsymbol{w})_T$.

Hint: You may use the following:

- (v) Extend S to a basis for \mathbb{R}^4 .
- (vi) Find a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$ such that the kernel of T is V.

Hint: You may give your answer by finding the standard matrix of T.

Question 4 Let

$$\mathbf{Y} = \begin{pmatrix} 2 & -4 & 6 & 8 \\ 2 & -1 & 3 & 2 \\ 4 & -5 & 9 & 10 \\ 0 & -1 & 1 & 2 \end{pmatrix}, \quad \mathbf{Z} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{v_1} = \begin{pmatrix} 2 \\ 0 \\ -2 \\ 1 \end{pmatrix}, \quad \mathbf{v_2} = \begin{pmatrix} 1 \\ 5 \\ -1 \\ 3 \end{pmatrix}.$$

- (i) Show that $rank(\mathbf{Y}) = 2$.
- (ii) Determine $\operatorname{nullity}(\boldsymbol{Y})$. Hence show that $\{\boldsymbol{v_1},\boldsymbol{v_2}\}$ is a basis for the $\operatorname{nullspace}$ of \boldsymbol{Y} .
- (iii) Determine if $Zx = v_1$ is consistent. If it is, express v_1 as a linear combination of the columns of Z. If not, find a vector w such that Zx = w is consistent and $d(w, v_1)$ is as small as possible.
- (iv) Are there elementary matrices E_1, \ldots, E_k such that $E_k \cdots E_1 Y = Z$? If so, find such E_1, \ldots, E_k . If not, explain why.
- (v) Let u_1, u_2, u_3, u_4 be any 4 vectors in \mathbb{R}^4 and $U = \{Yu_1, Yu_2, Yu_3, Yu_4\}$. Determine the largest possible value of dim(span(U)).