NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 2 EXAMINATION 2012-2013

MA3227 Numerical Analysis II

April 2013 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains a total of **FIVE** (5) questions and comprises **Four** (4) printed pages.
- 2. Answer **ALL** questions.
- 3. This is a closed book exam. However, candidates are allowed to bring an A4 sized help sheet which can be written on both sides.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA3227

Question 1 [20 marks]

- (a) Suppose $B = uv^{\top}$, where $u, v \in \mathbb{R}^{n \times 1}$. Prove that $||B||_2 = ||u||_2 ||v||_2$.
- (b) Let $n \geq 2$. Prove that $||I uu^{\top}||_2 = 1$ where $I \in \mathbb{R}^{n \times n}$ is the identity matrix and $u \in \mathbb{R}^{n \times 1}$ satisfies $||u||_2 = 1$. [Hint: Recall $||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$. If $\{u_i, i = 1, ..., n\}$ is an orthonormal basis of $\mathbb{R}^{n \times 1}$, any vector $y \in \mathbb{R}^{n \times 1}$ can be written as $\sum_{i=1}^n \beta_i u_i$ for some $\beta_i \in \mathbb{R}$. How are $||y||_2$ and $\sqrt{\sum_{i=1}^n \beta_i^2}$ related? In the proof, you can also use the fact that for any $u \in \mathbb{R}^{n \times 1}$ with $||u||_2 = 1$, you can extend it to $\{u, u_2, u_3, ..., u_n\}$ which form an orthonormal basis.]

Question 2 [20 marks]

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Suppose there is a $B \in \mathbb{R}^{n \times n}$ whose inverse is easy to calculate, and suppose $B + B^{\top} - A$ is also positive definite. Consider the following iteration for solving Ax = b:

$$x_{k+1} = x_k + B^{-1}(b - Ax_k). (1)$$

Prove that the iteration will converge for any initial guess x_0 by going through the following steps:

- (a) Let $e_k = x x_k$. Find a matrix H so that $e_{k+1} = He_k$. [5 marks]
- (b) Let $\lambda \in \mathbb{C}$ be any eigenvalue of H. Denote its associated eigenvector by u. Note that u in general is a complex vector in $\mathbb{C}^{n\times 1}$. Find a function $g(\lambda)$ so that

$$u^*(B + B^{\top} - A)u = g(\lambda) \ u^*Au,$$

where u^* is the conjugate transpose of u. [10 marks] [Hint: First derive an equation for u^*Au , and then take the conjugate transpose of it.]

(c) Prove that $|\lambda| < 1$ and hence the spectral radius of H is strictly less than one. [5 marks]

PAGE 3 MA3227

Question 3 [20 marks]

(a) Perform one iteration of Newton's method for solving

$$\begin{cases} xy^2 + x^2y + x^4 - 3 &= 0 \\ x^3y^5 - 2x^5y - x^2 + 3 &= 0, \end{cases}$$

starting with initial guess $(1,1)^{\top}$.

(b) Prove that if f is continuous on [a,b] and satisfies $a \leq f(a)$ and $f(b) \leq b$, then f has a fixed point in the interval [a,b]. Note that we do not assume $a \leq f(x) \leq b$ for all x in [a,b]. [Hint: What is the theorem that lies behind the bisection method for finding a root of g(x)?]

Question 4 [25 marks]

Suppose you want to approximate $I = \int_0^1 f(x)dx$ by Monte Carlo method, where $f(x) = \frac{1}{x^{1/3}} + \frac{x}{10}$.

- (a) If you use simple sampling to approximate I by $\hat{I}_n = \frac{1}{n} \sum_{i=1}^n f(U_i)$, where $U_1, ..., U_n$ are i.i.d. U(0,1) random variables, what is the variance of \hat{I}_n ? How is the variance of \hat{I}_n related to $|\hat{I}_n I|$? [10 marks]
- (b) How do you generate a random variable X with given pdf $g(x) = \frac{2}{3\pi^{1/3}}$? [5 marks]
- (c) If you use importance sampling based on the pdf $g(x) = \frac{2}{3x^{1/3}}$, what is the new formula of \hat{I}_n once you have generated n i.i.d. random variables $X_1, X_2, ..., X_n$ whose common pdf is g(x)? What is the variance of this new \hat{I}_n ? [10 marks]

PAGE 4 MA3227

Question 5 [15 marks]

Suppose we have m items. The ith item is worth v_i dollars and weighs w_i kilograms. We can put some of these items into a "knapsack", but the total weight cannot be more than b kilograms. We like to find out what is the most valuable subset of items that will fit into the knapsack. To formulate it as a mathematical problem, let $\vec{w} = (w_1, ..., w_m) \in \mathbb{R}^m$, $\vec{v} = (v_1, ..., v_m) \in \mathbb{R}^m$, and $\vec{z} = (z_1, ..., z_m) \in \{0, 1\}^m$, where $z_i = 1$ if item i is put into the knapsack, and $z_i = 0$ otherwise. \vec{z} is called the decision vector. Clearly, $\vec{w} \cdot \vec{z} = \sum_{i=1}^m w_i z_i$ is the total weight and $\vec{v} \cdot \vec{z} = \sum_{i=1}^m v_i z_i$ is the total value. The set of all permissible ways to pack the knapsack is $S = \{\vec{z} \in \{0, 1\}^m : \vec{w} \cdot \vec{z} \leq b\}$. We can now express our original optimization problem as the following integer programming problem:

maximize
$$\vec{v} \cdot \vec{z}$$
 subject to $\vec{z} \in S$.

We would like to generate a Markov chain $\{X_1, X_2, ..., X_n, ...\}$ on S. After a large number of X_i 's have been generated, we then choose the one for which the total value $\vec{v} \cdot X_i$ is largest.

We can construct a S-valued Markov chain by the following algorithm.

Given the current $X_t = \vec{z} = (z_1, ..., z_m) \in S$:

- 1) Choose $J \in \{1, ..., m\}$ uniformly at random.
- 2) Flip z_J : that is, let $\vec{y} = (z_1, ..., z_{J-1}, 1 z_J, z_{J+1}, ..., z_m)$.
- 3) If $\vec{y} \in S$, then set $X_{t+1} = \vec{y}$. If $\vec{y} \notin S$, then set $X_{t+1} = \vec{z}$.

Now, answer the following three questions:

- (a) In the above Markov chain, if both \vec{z} and \vec{y} are in S, and if \vec{z} can be changed to \vec{y} by flipping just one component of \vec{z} , what is the transition probability $p_{\vec{z}\vec{y}}$ and $p_{\vec{y}\vec{z}}$? [5 marks]
- (b) What is the invariant distribution of the above Markov chain on S? [5 marks]
- (c) If we want to sample from S so as to make better solutions more likely, we may want the invariant distribution to be $\pi_{\beta}(\vec{z}) = C^{-1}e^{\beta(\vec{v}\cdot\vec{z})}$ for some given parameter $\beta > 0$ and some unknown constant C > 0. If so, what is the Metropolis algorithm for generating such a Markov chain? [5 marks]

END OF PAPER