NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 2 EXAMINATION 2012-2013

Linear Algebra II

April 2013 — Time allowed: 2 hours

MA2101

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of TWO (2) sections. It contains SEVEN (7) questions and comprises FOUR (4) printed pages.
- 2. Answer ALL questions in Section A. Section A carries a total of 60 marks.
- **3.** Answer not more than **TWO** (2) questions in **Section B**. Each question in **Section B** carries 20 marks.
- **4.** Calculators can be used. However, various steps in the calculations should be laid out systematically.

PAGE 2 MA2101

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1 [15 Marks]

(In this question, vectors in \mathbb{R}^2 are written as column vectors.)

Let
$$V = \mathcal{M}_{2\times 2}(\mathbb{R})$$
 and $W = \{ \boldsymbol{A} \in V \mid \boldsymbol{A}\boldsymbol{u} = \boldsymbol{0} \}$ where $\boldsymbol{u} = (1, -1)^{\mathrm{T}}$.

- (a) Show that W is a subspace of V.
- (b) Find a basis for W and determine the dimension of W.
- (c) Give an example of a subspace W' of V such that $V = W \oplus W'$.

Question 2 [15 Marks]

Let $T: \mathcal{P}_2(\mathbb{C}) \to \mathbb{C}^3$ be a linear transformation such that $[T]_{E,B} = \begin{pmatrix} 1 & \text{i} & 1 \\ 0 & 1 & \text{i} \\ 1 & 2\text{i} & 0 \end{pmatrix}$ where $B = \{1, x, x^2\}, E = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $\mathbf{i} = \sqrt{-1}$.

- (a) Find a basis for Ker(T). Hence, or otherwise, find nullity(T) and rank(T).
- (b) Let $C = \{1, 1 + ix, 1 + x^2\}$. Compute $[T]_{E,C}$.
- (c) Find an invertible matrix \boldsymbol{P} such that $[T]_{E,B}\boldsymbol{P}=[T]_{E,C}$.

Question 3 [15 Marks]

Let T be a linear operator on $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ defined by

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} b+d & a \\ 3c-d & 2c \end{pmatrix} \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V.$$

- (a) Compute the characteristic polynomial of T.
- (b) Find a real polynomial p(x) so that $T^{-1} = p(T)$.
- (c) Find the dimension of the eigenspace of T associated with the eigenvalue 1 and hence write down a Jordan canonical form for T.

PAGE 3 MA2101

Question 4 [15 Marks]

- (a) Give an example of a real 2×2 matrix such that it is normal but not symmetric.
- (b) Let A be a real normal matrix. Prove that if all eigenvalues of A are real numbers, then A is symmetric.
- (c) Restate the result of (b) in terms of a linear operator.

SECTION B

Answer not more than **two** questions from this section. Each question in this section carries 20 marks.

Question 5 [20 Marks]

Let S and T be linear operators on a finite dimensional vector space V.

(a) Describe how to find ordered bases B and C for V such that

$$[S]_{C,B} = \begin{pmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{0}_{n \times n} \end{pmatrix}$$

where m = rank(S) and n = nullity(S). (You do not need to prove that B and C are bases for V.)

- (b) Let $[T]_{B,C} = \begin{pmatrix} \boldsymbol{W} & \boldsymbol{X} \\ \boldsymbol{Y} & \boldsymbol{Z} \end{pmatrix}$ where $\boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Y}$ and \boldsymbol{Z} are $m \times m, m \times n, n \times m$ and $n \times n$ matrices respectively. Compute $[T \circ S]_B$ and $[S \circ T]_C$.
- (c) Hence, or otherwise, prove that $T \circ S$ and $S \circ T$ have the same characteristic polynomials.
- (d) Is it true that $T \circ S$ and $S \circ T$ always have the same minimal polynomials? Justify your answer.

 $\cdots - 4-$

PAGE 4 MA2101

Question 6 [20 Marks]

Let T be a linear operator on a finite dimensional vector space V. Suppose λ is an eigenvalue of T. Define $Q = T - \lambda I_V$ and $K_i = \text{Ker}(Q^i)$ for $i = 1, 2, 3, \ldots$

- (a) Prove that
 - (i) $K_i \subseteq K_{i+1}$ for all $i \ge 1$; and
 - (ii) if $K_k = K_{k+1}$ for some k, then $K_k = K_m$ for all $m \ge k$.
- (b) Suppose s is the smallest positive integer such that $K_s = K_{s+1}$. Let $K = K_s$ and $R = R(Q^s)$. It is known that K and R are T-invariant subspaces of V.
 - (i) Prove that $V = K \oplus R$.
 - (ii) Find the minimal polynomial of $T|_K$.

Question 7 [20 Marks]

Let T be a linear operator on an inner product space V. Suppose the adjoint T^* of T exists.

- (a) Prove that $Ker(T^* \circ T) = Ker(T)$.
- (b) Is it true that $Ker(T \circ T^*) = Ker(T)$? Justify your answer.
- (c) Given $\mathbf{b} \in V$, show that $\mathbf{x} = \mathbf{u}$ is a solution to $(T^* \circ T)(\mathbf{x}) = T^*(\mathbf{b})$ if and only if $T(\mathbf{u})$ is the orthogonal projection of \mathbf{b} onto R(T).
- (d) Given $\mathbf{b} \in R(T)$, show that $\{\mathbf{u} \mid T(\mathbf{u}) = \mathbf{b}\} = \{\mathbf{u} \mid (T^* \circ T)(\mathbf{u}) = T^*(\mathbf{b})\}.$

[END OF PAPER]