NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION 2012-2013

MA2101 Linear Algebra II

November 2012 – Time allowed: 2 hours

INSTRUCTIONS	\mathbf{TO}	CANDID	ATES
--------------	---------------	---------------	------

- (1) Answer all questions.
- (2) There are SIX (6) questions in this paper. Each is worth TEN (10) points.
- (3) This examination paper consists of THIRTEEN (13) printed pages.
- (4) Write all answers on this question paper.
- (5) Provide proofs/justification for all results used other than those from the lectures or tutorials.

Matric No:									
Question	1	2	3	4	5	6			
Points									

1. (a) Given that $V=\{p(x)\in P_2(\mathbb{R}): p(1)=0\}$ is a subspace of $P_2(\mathbb{R}),$ find a basis for V.

(b) If V is endowed with the inner product

$$\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x) dx,$$

find an orthonormal basis for V.

2. Let $A=\begin{pmatrix}2&0\\-3&1\end{pmatrix}$ and let $T:M_2(\mathbb{R})\to M_2(\mathbb{R})$ be the linear transformation defined by

$$T(B) = AB$$
.

Determine if T is diagonalizable. If so, find an ordered basis β for $M_2(\mathbb{R})$ so that $[T]_{\beta}$ is a diagonal matrix.

More working space for $\mathbf{Q}2$

3. Let V be a finite dimensional complex inner product space. Suppose that there are orthonormal bases β and γ for V so that $[T]^{\gamma}_{\beta}$ is a unitary matrix. Show that T is a unitary linear transformation.

More working space for Q3

4. Let V and W be finite dimensional vector spaces and let T and S be one-to-one linear transformations from V to W so that $R(T) \cap R(S) = \{0\}$. If $\{v_1, \ldots, v_n\}$ is a basis for V, show that $\{(T+S)(v_1), \ldots, (T+S)(v_n)\}$ is a basis for R(T+S).

More working space for Q4

- 5. Let $T:V\to V$ be a linear transformation on a finite dimensional inner product space.
- (a) Show that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .

(b) Show that $E_{\lambda}(T)=[R(T^*-\overline{\lambda}I)]^{\perp}$ and deduce that $\dim(E_{\lambda}(T))=\dim(E_{\overline{\lambda}}(T^*))$.

6. Let V be an n-dimensional real vector space. Suppose that f_1,\ldots,f_m are linearly independent elements of $L(V,\mathbb{R})$. Show that

$$\dim(\bigcap_{i=1}^{m} N(f_i)) = n - m.$$

Hint: Consider the linear transformation $T:V\to\mathbb{R}^m$ given by $T(v)=(f_1(v),\ldots,f_m(v)).$

More working space for Q6