Ph.D. Qualifying Examination 2013 Jan (Analysis)

(1) A function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be locally Lipschitz if given any $x \in \mathbb{R}^{n}$, there exist $\delta, L>0$ (depending on x) such that

$$
\begin{equation*}
|\phi(z)-\phi(y)| \leq L|z-y| \text { for all } z, y \in B_{\delta}(x)=\left\{t \in \mathbb{R}^{n}:|x-t|<\delta\right\} \tag{*}
\end{equation*}
$$

If ϕ is locally Lipschitz on \mathbb{R}^{n}, show that for any compact set $K \subset \mathbb{R}^{n}$, there exists a constant $M>0$ (depending on K) such that

$$
\begin{equation*}
|\phi(x)-\phi(y)| \leq M|x-y| \text { for all } x, y \in K . \tag{10}
\end{equation*}
$$

(2) Let $w \in L^{1}\left(\mathbb{R}^{d}\right)$ be strictly positive and $\left\{f_{n}\right\}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be (Lebesgue) measurable functions such that

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \int_{\left|f_{n}-f_{m}\right|>t} w(x) d x=0 \quad \text { for any } t>0 \tag{12}
\end{equation*}
$$

Show that $\left\{f_{n}\right\}$ has a subsequence $\left\{f_{n_{j}}\right\}$ that converges a.e. to a measurable function $g(x)$.
(3) Let Ω be an open connected subset of \mathbb{R}^{3}. Suppose $u \in C_{0}^{2}(\Omega)$ and $f \in C_{0}(\Omega)$ are such that

$$
\begin{equation*}
\Delta u-2 u=f \text { on } \Omega \text { where } \Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} . \tag{5}
\end{equation*}
$$

Show that

$$
\int|f|^{2} d x=\int|\Delta u|^{2}+4|\nabla u|^{2}+4|u|^{2} d x \text { where } \nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) .
$$

(4) Compute (a) $\int_{\gamma} e^{z} / z^{3} d z$, where $\gamma:[0,1] \rightarrow \mathbb{C}$ with $\gamma(t)=e^{i 6 \pi t}$ and
(b) $\int_{0}^{\pi / 2} \frac{d \theta}{a+\sin ^{2} \theta}, a>0$.
(5) Let $f:\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\} \rightarrow \mathbb{R}$ be such that f is continuously differentiable with $\nabla f(0,0)=(1,2)$ and $f(0,0)=0$. Show that there exist $\varepsilon>0$ and $\gamma \in C^{1}(-\varepsilon, \varepsilon)$ such that $\gamma(0)=0$ and $f(x, \gamma(x))=0$ for $x \in(-\varepsilon, \varepsilon)$. Compute $\gamma^{\prime}(0)$ if possible. [5]
(6) Explain in details with the help of the fact that $\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots$ for $|x|<1$ why

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}=-\log 2 \tag{10}
\end{equation*}
$$

(7) Let $w \in L^{1}[0, \pi]$ be nonnegative. Suppose $\left\{f_{n}\right\}$ is a sequence of (Lebesgue measurable) functions that converges a.e. to a function f. Suppose $\int_{0}^{\pi}\left|f_{n}\right|^{2} w d x \rightarrow \int_{0}^{\pi}|f|^{2} w d x<\infty$. Show that $\int_{0}^{\pi}\left|f_{n}-f\right|^{2} w d x \rightarrow 0$.
(8) Prove or disprove not more than six (6) of the following statements.
(a) If ϕ is a function of bounded variation on $[a, b]$ for all $[a, b] \subset \mathbb{R}$ and g is a nondecreasing function on $[0,1]$, then $\phi(g) \in B V[0,1]$.
(b) Let \mathcal{C} be the Cantor set. Then $\chi_{\mathcal{C}}$ is Riemann integrable on $[0,1]$.
(c) If $\left\{f_{j}\right\}, f:(0,1) \rightarrow \mathbb{C}$ are integrable such that

$$
\lim _{j \rightarrow \infty} \int_{K} f_{j}(x) d x=\int_{K} f(x) d x \text { for all compact subset } K \text { of }(0,1) \text {, }
$$

then

$$
\lim _{j \rightarrow \infty} \int_{(0,1)} f_{j}(x) d x=\int_{(0,1)} f(x) d x
$$

(d) If $\left\{a_{i, j}\right\}_{i, j=1}^{\infty}$ is a collection of nonnegative real numbers, then

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j}=\lim _{N \rightarrow \infty} \sum_{\{i, j: i+j \leq N\}} a_{i, j} .
$$

(e) Let $\left\{f_{n}\right\}: \mathbb{D}=\{z \in \mathbb{C}:|z|<1\} \rightarrow \mathbb{C}$ be analytic. If there exists f on \mathbb{D} such that $f_{n} \rightarrow f$ uniformly on any compact subset of \mathbb{D}, then f is also analytic on \mathbb{D}.
(f) Let $u: G \rightarrow \mathbb{R}$ be a harmonic function where G is an open connected set in \mathbb{C}. Then there exists $v: G \rightarrow \mathbb{R}$ such that the function $f(z)=u(z)+i v(z)$ is analytic on G.
(g) If a function is piecewise differentiable on $[a, b]$, then it is of bounded variation on $[a, b]$.
(Note that a function f is said to be piecewise differentiable on $[a, b]$ if there exist a partition $a_{0}=a<a_{1}<\cdots<a_{k}=b$ of $[a, b]$ and $g_{i}:\left[a_{i-1}, a_{i}\right] \rightarrow \mathbb{R}$ such that its derivative g_{i}^{\prime} is continuous on $\left[a_{i-1}, a_{i}\right]$ and $f=g_{i}$ on $\left(a_{i-1}, a_{i}\right)$ for $i=1, \cdots, k$.)
(h) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be locally integrable and for all $x \in \mathbb{R}^{n}$, define

$$
h(x)=\limsup _{r \rightarrow 0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)|^{1 / 2} d y .
$$

Then $|f(x)| \leq h(x)^{2}$ a.e..

