Ph.D. Qualifying Examination 2012 August (Analysis)

(1) Let $n>1$. For any $M>1$, show that there exists $C_{M}>1$ such that $\int_{M Q}|x|^{-1} d x \leq$ $C_{M} \int_{Q}|x|^{-1} d x$ for any cube $Q \subset \mathbb{R}^{n}$ where $M Q$ is the concentric cube with M times length as Q and $|x|$ is the Euclidean norm of x.
(2) Let $<X, d>$ be a compact metric space. For any $0<\alpha<1$, let $C^{\alpha}(X)$ be the collection of continuous functions on X such that $\sup _{x \neq y} \frac{|f(x)-f(y)|}{d(x, y)^{\alpha}}<\infty$. Suppose $\left\{f_{n}\right\}$ is a sequence in $C^{\alpha}(X)$ such that

$$
\sup _{n}\left(\sup _{x \neq y} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{d(x, y)^{\alpha}}+\sup _{x \in X}\left|f_{n}(x)\right|\right)<\infty .
$$

Show that for each $0<\beta<\alpha,\left\{f_{n}\right\}$ has a convergent subsequence converging uniformly to a function $f \in C^{\beta}(X)$.
(3) Let $f(x)=\sqrt{x^{2}+y^{2}+z^{2}}$. Use the function ∇f on $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 1<x^{2}+y^{2}+\right.$ $\left.z^{2}<4\right\}$ to illustrate divergence theorem. (You will need to compute both integrals.) [7]
(4) Let $f:[0,1] \rightarrow \mathbb{R}$ be measurable and $g \in L^{1}[0,1]$ such that $\int_{|f(x)|>t}|g(x)| d x \leq 3 / t^{2}$ for all $t>0$, show that $\int_{0}^{1}|f(x)|^{p}|g(x)| d x<\infty$ for $1<p<2$.
(5) (i) Let $1 \leq p<\infty$ and w be a nonnegative integrable function on $[0,1]$. Show that given any interval $I=[a, b] \subset[0,1]$ and $\varepsilon>0$, there exists a continuous function ϕ on $[0,1]$ such that $\phi \geq \chi_{I}$ and $\int_{0}^{1}|\phi|^{p} w(x) d x \leq \int_{a}^{b} w d x+\varepsilon$. Hence show that $C[0,1]$ (space of continuous functions on $[0,1]$) is dense in $L_{w}^{p}[0,1]$ (with norm $\left.\left(\int_{0}^{1}|f|^{p} w d x\right)^{1 / p}\right)$. [11]
(ii) Assume that

$$
\begin{equation*}
\int_{0}^{1}\left|f(x)-f_{a v}\right|^{p} w(x) d x \leq C \int_{0}^{1}\left|f^{\prime}(x)\right|^{p} w(x) d x \text { where } f_{a v}=\int_{0}^{1} f(x) d x \tag{1}
\end{equation*}
$$

for all $f \in C^{1}[0,1]$. Show that inequality (1) holds for all absolutely continuous functions f on $[0,1]$ such that $f^{\prime} \in L_{w}^{p}([0,1])$.
(6) Let $f, g \in L^{p}[a, b], 1<p<\infty$. Show that the function $I(t)=\int_{a}^{b}|f(x)+\operatorname{tg}(x)|^{p} d x$ is differentiable at $t=0$ and compute its derivative.
(7) Let Ω be an open connected subset of \mathbb{C} and $f: \Omega \rightarrow \mathbb{C}$ be analytic. Is it true that f is conformal (on Ω)? Explain what "conformal" means and justify your answer.
(8) For each $z \in \mathbb{C}$, evaluate

$$
\int_{0}^{1} \int_{0}^{2 \pi} \frac{1}{r e^{i \theta}+z} d \theta d r
$$

(9) Prove or disprove Six (6) of the following statements.
(a) If f is an entire function on \mathbb{C}, then the function $g(z)=\overline{f(\bar{z})}$ is also entire.
(b) Let Ω be an open connected set in \mathbb{C} and $f: \Omega \rightarrow \mathbb{C}$ be an analytic function. If $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \Omega$ are piecewise differentiable such that for all $t \in[0,1]$,
$\left|\gamma_{1}(t)-\gamma_{2}(t)\right| \leq \min \{t, 1-t\} d(t) / 2$ where $d(t)=\inf \left\{\left|\gamma_{1}(t)-z\right|: z \notin \Omega\right\}$, then $\int_{0}^{1} f\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t) d t=\int_{0}^{1} f\left(\gamma_{2}(t)\right) \gamma_{2}^{\prime}(t) d t$.
(c) If $\sum_{n=1}^{\infty} a_{n}(-1)^{n}$ converges, then $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges to a C^{∞} function on $(-1,1)$.
(d) There exists a harmonic function f on $\left\{z=(x, y): 0<x^{2}+y^{2}<1\right\}$ such that
(i) $\lim _{z \rightarrow z_{0},|z|<1} f(z)=1$ for all $\left|z_{0}\right|=1$;
(ii) $\lim _{z \rightarrow 0} f(z)=-1$.
(e) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is Borel measurable, then for each $x \in \mathbb{R}, f_{x}(y)=f(x, y)$ is Borel measurable on \mathbb{R}.
(f) The series $\sum_{k=1}^{\infty} \cos k x / k$ converges conditionally for almost all $x \in \mathbb{R}$.
(g) Let Ω be a connected open set in \mathbb{C}. If $f: \Omega \rightarrow \mathbb{C}$ is continuous and $\gamma:[0,1] \rightarrow \Omega$ is a rectifiable curve, then the line integral $\int_{\gamma} f d z$ is defined.
(h) Let $\left\{a_{n}\right\}$ be a bounded sequence of positive real numbers such that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=1$, then $\left\{a_{n}\right\}$ is a convergent sequence.

