NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 2012-2013

Ph.D. QUALIFYING EXAMINATION

PAPER 1

ALGEBRA

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- (1) This examination paper contains **FIVE** questions and **THREE** printed pages.
- (2) Each question has 4 parts, worth 5 points each, for a total of 20 points per question.
- (3) Answer **ALL** questions.
- (4) Please state any theorems used without proof clearly.

Question 1

(i) Let V be the vector space of $m \times n$ -matrices over a field F. Fix an $m \times m$ matrix A and an $n \times n$ -matrix C, and consider the map

$$\phi: V \longrightarrow V$$

defined by

$$\phi(B) = ABC$$
.

Show that ϕ is linear and determine the trace of ϕ in terms of A and C.

- (ii) Determine the determinant of ϕ in terms of A and C.
- (iii) Consider a system $\Sigma(y)$ of m linear equations in n variables x_1, \dots, x_n :

$$\sum_{j=1}^{n} a_{ij}(y) \cdot x_j = b_i(y), \quad i = 1, 2, ..., m,$$

whose coefficients $a_{ij}(y)$ and $b_i(y)$ are polynomials over \mathbb{C} in a variable y. Suppose that for some $y_0 \in \mathbb{C}$, $\Sigma(y_0)$ has a unique solution. Show that $n \leq m$ and that for all but finitely many $y \in \mathbb{C}$, the system $\Sigma(y)$ has at most one solution.

(iv) If, further m=n, show that $\Sigma(y)$ has a unique solution for all but finitely many $y\in\mathbb{C}$.

Question 2

Let G be a finite abelian group. A character of G is a group homomorphism

$$\chi: G \longrightarrow \mathbb{C}^{\times},$$

where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.

- (i) If $\chi_1, ..., \chi_r$ are distinct characters of G, show that $\chi_1, ..., \chi_r$ are linearly independent elements in the vector space of \mathbb{C} -valued functions on G. Deduce that G has at most |G| distinct characters.
- (ii) Show that G has exactly |G| distinct characters. (Hint: you may want to use the fundamental theorem of finite abelian groups).
- (iii) Let \widehat{G} denote the set of all characters of G. Show that \widehat{G} is a group under the product:

$$(\chi_1 * \chi_2)(g) = \chi_1(g) \cdot \chi_2(g)$$
 for all $g \in G$.

(iv) Is it true that \widehat{G} is isomorphic to G as groups? Justify your answer.

Question 3

- (i) Give the definition of a Euclidean domain and a principal ideal domain.
- (ii) Prove that a Euclidean domain is a principal ideal domain.
- (iii) Decide with justification whether $\mathbb{Z}[x]$ is a principal ideal domain.
- (iv) Decide with justification whether $\mathbb{Z}[\sqrt{-2}] = \mathbb{Z}[x]/(x^2+2)$ is a principal ideal domain.

Question 4

- (i) Let p be an odd prime. Show that the polynomial $f(x) = x^p 2$ is irreducible over \mathbb{Q} .
- (ii) Determine the splitting field K of f(x) in \mathbb{C} in the form $\mathbb{Q}(x,y)$ for some elements $x,y\in\mathbb{C}$.
- (iii) Determine the Galois group of K over \mathbb{Q} by writing down how its elements act on the generators x and y of K over \mathbb{Q} arising in (ii).
- (iv) Show that the Galois group of K over \mathbb{Q} is isomorphic to the group of matrices

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right), \quad a, b \in \mathbb{F}_p, \ a \neq 0,$$

where \mathbb{F}_p denotes the finite field with p elements.

Question 5

Let R be a commutative ring with identity element and let M and N be R-modules.

- (i) Give the definition of the R-module $M \otimes_R N$.
- (ii) If $N_1 \longrightarrow N_2$ is injective, is the induced map $M \otimes_R N_1 \longrightarrow M \otimes_R N_2$ necessarily injective? Justify your answer.
- (iii) If $N_1 \longrightarrow N_2$ is surjective, is the induced map $M \otimes_R N_1 \longrightarrow M \otimes_R N_2$ necessarily surjective? Justify your answer.
- (iv) Show that

$$\operatorname{Hom}_R(M \otimes_R N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$$

for R-modules M, N and R.