NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 2 EXAMINATION, AY 2011/2012

MA2101 Linear Algebra II

May 2012 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- This examination paper contains a total of EIGHT (8) questions and comprises FIVE
 printed pages.
- 2. Answer **ALL** questions.
- 3. Marks for each question are indicated at the beginning of the question. The marks for questions are not necessarily the same.
- 4. Calculators may be used. However, various steps in the calculations should be systematically laid out.

PAGE 2 MA2101

Question 1 [15 marks]

Let W_1 and W_2 be vector subspaces of a vector space V over a field F.

- (a) Show that the sum $W_1 + W_2$ is a vector subspace of V.
- (b) Assume that dim $W_i = n_i < \infty$ (i = 1 and 2). Use the second isomorphism theorem or otherwise, to show that the following two conditions are equivalent.
- (bi) The sum $W_1 + W_2$ is a direct sum.
- (bii) $\dim(W_1 + W_2) = \dim W_1 + \dim W_2$.
 - (c) Without the assumption dim $W_i < \infty$, are (bi) and (bii) always equivalent? If the answer is 'yes', prove so; if the answer is 'no', provide a *concrete* counterexample.

Question 2 [15 marks]

(a) Let $A \in M_{m \times n}(\mathbf{R})$ and $B \in M_{n \times r}(\mathbf{R})$ be real matrices. Let

$$T_A: \mathbf{R}_c^n \to \mathbf{R}_c^m, \quad T_B: \mathbf{R}_c^r \to \mathbf{R}_c^n$$

be the associated linear transformations. You may use the fact that

$$\operatorname{rank}(A) = \dim T_A(\mathbf{R}_c^n), \quad \operatorname{rank}(AB) = \dim T_{AB}(\mathbf{R}_c^r) = \dim T_A(T_B(\mathbf{R}_c^r)).$$

Use the first isomorphism theorem or otherwise, to show that

$$\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\} \leq \min\{m, n, r\}.$$

(b) Let $T:V\to W$ be a linear transformation between *finite*-dimensional vector spaces over the same field ${\bf R}$ of real numbers. Let

$$B_V = {\mathbf{v}_1, \dots, \mathbf{v}_n}, \quad B_W = {\mathbf{w}_1, \dots, \mathbf{w}_m}$$

be bases of V and W, respectively. Show that the following three statements are equivalent (**Note.** n = m is not assumed).

- (bi) T is an isomorphism.
- (bii) There is a linear transformation $S: W \to V$ such that the compositions satisfy:

$$S \circ T = I_V, \quad T \circ S = I_W.$$

(biii) The representation matrix $[T]_{B_V,B_W}$ is a square matrix and invertible.

PAGE 3 MA2101

Question 3 [10 marks]

Let $A \in M_6(\mathbf{R})$ be a real matrix with $m(x) := m_A(x) = (x-1)^2(x-2)$ the minimal polynomial.

(a) Determine which of the following polynomials $p_1(x) = (x-1)^4(x-2)^2$, $p_2(x) = (x-1)^3(x-2)^2(x-3)$, $p_3(x) = (x-1)^2(x-2)^3$ can be the characteristic polynomial $p_A(x)$ of A. Justify your answer(s).

(b) Find all possible Jordan canonical forms of A with respect to each of your answer(s) in (a). Justify your answers.

Question 4 [15 marks]

Let W be a vector space defined over the field \mathbf{R} of real numbers and let

$$B_1 = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$$

be a basis of W. Let $T: W \to W$ be a linear operator with

$$K := [T]_{B_1}$$

the representation matrix relative to the basis B_1 .

(a) Assume that

$$Kq_1 = q_1, \ Kq_2 = 2q_2, \ Kq_3 = 3q_3$$

where

$$(q_1 \ q_2 \ q_3) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

(ai) Find three linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ of T. Express each \mathbf{v}_i as a linear combination of elements in B_1 .

(aii) Prove that $B_2 := \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of W.

(b) Let

$$P = \begin{pmatrix} -2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

and define vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ such that

$$(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)P.$$

(bi) Prove that $B_3 := \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a basis of W.

(bii) Find an invertible matrix Q such that $Q[T]_{B_3}Q^{-1}$ is equal to a diagonal matrix.

$$\dots -4$$
 –

PAGE 4 MA2101

Question 5 [10 marks]

Let $H \in M_4(\mathbf{R})$ be a real matrix. Assume that

$$(H^2 - I_4)(H + 2I_4) = 0.$$

- (a) Find all possible minimal polynomials $m(x) := m_H(x)$ and characteristic polynomials $p(x) := p_H(x)$ of H. Justify your answers.
- (b) Is H diagonalizable? Justify your answer.
- (c) Is H an invertible matrix? If the answer is 'no', prove so; if the answer is 'yes', with respect to each of your answers in (a), find a corresponding polynomial f(x) such that $H^{-1} = f(H)$.

Question 6 [15 marks]

Consider the real matrix $A \in M_3(\mathbf{R})$ below:

$$A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

- (a) Find all eigenvalues of A.
- (b) For each eigenvalue λ of A, find an orthonormal basis of the eigenspace $V_{\lambda}(A)$.
- (c) Find an orthogonal matrix P such that P^tAP is equal to a diagonal matrix.

PAGE 5 MA2101

Question 7 [10 marks]

Let $A \in M_n(\mathbf{C})$ $(n \ge 1)$ be a positive definite matrix.

- (a) Show that $A = GG^*$ for some invertible matrix G.
- (b) Can you write $A=E^2$ for some self-adjoint and invertible matrix E? Justify your answer.
- (c) Assume that $L \in M_n(\mathbf{C})$ is a self-adjoint invertible matrix. Is L^2 positive definite? Justify your answer.

Question 8 [10 marks]

Let (V, \langle, \rangle) be a finite-dimensional complex inner product space. Let $T: V \to V$ be a linear operator and $T^*: V \to V$ the adjoint of T. For a vector subspace Y of V, denote by

$$Y^{\perp} := \{ \mathbf{v} \in V \, | \, \langle \mathbf{v}, \mathbf{y} \rangle = 0, \, \, \forall \, \mathbf{y} \in Y \}.$$

- (a) Assume that W is a T^* -invariant vector subspace of V. It is known that W^{\perp} is a vector subspace of V. Show that W^{\perp} is a T-invariant subspace of V.
- (b) Assume that U is a T-invariant vector subspace of V. Is U^{\perp} a T-invariant subspace of V? If the answer is 'yes', prove so; if the answer is 'no', provide a concrete counterexample.