NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2011-2012

MA2101 Linear Algebra II

November 2011 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed book examination.
- 2. The examination contains a total of SIX (6) questions and comprises THREE (3) printed pages.
- 3. The examination carries a total of 100 marks. Answer **ALL** questions.

PAGE 2 MA2101

Question 1 [10 marks]

Label the following statements as true or false. You do NOT need to justify your answers.

- (a) Every normal operator is self-adjoint.
- (b) Any subset of a linearly independent set is linearly independent.
- (c) Every linear operator has at least one eigenvalue.
- (d) The sum of two diagonalizable $n \times n$ matrices is diagonalizable.
- (e) Every linear operator T on an inner product space has an adjoint T*.

Question 2 [30 marks]

- (a) Show that a linear transformation $T:V\to W$ is one-to-one if and only if N(T) (the null space of T) is $\{0\}$.
- (b) Give an example of a linear operator T on \mathbb{R}^2 such that $\mathbb{R}^2 \neq R(T) \oplus N(T)$, where R(T) denotes the range of T.
- (c) Let A be a $n \times n$ matrix whose characteristic polynomial splits. Show that the sum of all eigenvalues of A (possibly with multiplicities) is equal to tr(A).
- (d) Consider \mathbb{C}^2 as a vector space over the field \mathbb{R} . Let $W = \{(z, \overline{z}) \in \mathbb{C}^2 : z \in \mathbb{C}\}$. Prove that W is a subspace of the real vector space \mathbb{C}^2 and find (with explanation) a basis for W.
- (e) Let $A \in M_{n \times n}(\mathbb{C})$ whose only eigenvalues are 1, 2, 3, 4, 5 possibly with multiplicities. Find the rank of A + I.

Question 3 [15 marks]

Let T be the linear operator on $P_2(\mathbb{R})$, which consists of polynomials with real coefficients having degree less than or equal to 2, defined by

$$\mathsf{T}(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^2.$$

Show that T is diagonalizable. Moreover, find a diagonal matrix D and a basis β for V such that $[T]_{\beta}$ is D.

Question 4 [10 marks]

Let $W = \text{span}(\{(1, -1, i)\}) \in \mathbb{C}^3$. Find orthonormal bases for W and W^{\perp} respectively.

PAGE 3 MA2101

Question 5 [15 marks] Let V be a finite-dimensional inner product space over C.

- (a) Let T be a self-adjoint operator on V. Prove that $\langle T(\mathbf{v}), \mathbf{v} \rangle$ is a real number for all $\mathbf{v} \in V$.
- (b) Show that a linear operator T is self-adjoint and $\langle T(\mathbf{v}), \mathbf{v} \rangle \geq 0$ for all $\mathbf{v} \in V$ if and only if $T = U^*U$ for some linear operator U.

Question 6 [20 marks]

Let V be a finite-dimensional vector space over \mathbb{C} and let $T: V \to V$ be a linear operator. We say that T is nilpotent if $T^p = T_0$ for some positive integer p, where T_0 is the zero operator.

- (a) Show that T is nilpotent if and only if all eigenvalues of T are zero.
- (b) The trace $\operatorname{tr}(\mathsf{T})$ of T is defined to be $\operatorname{tr}(A)$, where A is the matrix of T with respect to some basis β . Show that this is well-defined, i.e., this does not depend on the choice of basis β .
- (c) Show that T is nilpotent if and only if all of $tr(T^n)$, where n is a positive integer, are zero.
- (d) Is statement (a) true for finite-dimensional vector spaces over \mathbb{R} ? Justify your answer.
- (e) Is statement (a) true for infinite-dimensional vector spaces over \mathbb{C} ? Justify your answer.

END OF PAPER