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Question 1 [10 points] For each of the following statements, prove it if it is true and
provide a counterexample if it is false.

(a) Let f : R2 → R be a function so that the directional derivative of f in any direction
exists at (0, 0). Then f is differentiable at (0, 0).

(b) Let U be a connected open set in C and let f : U → C be an analytic function. If there
exists z0 ∈ U such that Re f(z0) ≥ Re f(z) for any z ∈ U , then f is constant on U .

Question 2 [10 points] Let X be a compact metric space. Show that there is a sequence
of open sets (Un)∞n=1 in X such that for any x0 ∈ X and any closed set F in X not
containing x0, there exists n so that x0 ∈ Un and Un ∩ F = ∅.

Question 3 [10 points] Let f be a complex function that is analytic on an open set
containing the closed ball {z ∈ C : |z| ≤ 1}. Assume that f(0) 6= 0 and that
f(z) 6= 0 for any z with |z| = 1. Suppose that (ak)

n
k=1 are the distinct zeros of f in

{z ∈ C : |z| < 1}, with respective multiplicities (mk)
n
k=1. Show that

n∑
k=1

mk

a2
k

=

∫
C

f ′(z)

zf(z)
dz − f ′(0)

f(0)
,

where C is the circle {z : |z| = 1}, traversed once in the counterclockwise direction.

Question 4 [10 points] Let f : [0, 1] → R be a Lebesgue integrable function. Denote
Lebesgue measure by λ. Show that the series

sn =
∞∑

k=−∞

k

2n
λ
(
{x :

k

2n
< f(x) ≤ k + 1

2n
}

)

converges absolutely for each n ∈ N, and that limn→∞ sn =
∫ 1

0
f dλ.

Question 5 [10 points] For any n ∈ N, the n-th Rademacher function rn : [0, 1]→ R is
defined by

rn(t) =

{
(−1)k+1 if t ∈ [k−1

2n ,
k
2n ), 1 ≤ k ≤ 2n,

0 if t = 1.

Show that limn→∞
∫ 1

0
frndλ = 0 for any f ∈ L1[0, 1]. Here λ denotes Lebesgue

measure.
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Question 6 [10 points] Let f, g : [0, 1] → R be integrable functions with respect to
Lebesgue measure λ. Assume that for any a, b ∈ R

λ({t : f(t) ≤ a} ∩ {t : g(t) ≤ b}) = λ{t : f(t) ≤ a} · λ{t : g(t) ≤ b}.

Show that fg is integrable on [0, 1] with respect to Lebesgue measure and that∫
[0,1]

fg dλ =

∫
[0,1]

f dλ ·
∫

[0,1]

g dλ.

Question 7 [10 points] Let (fk)
∞
k=1 be a sequence in Lp(R), where 1 ≤ p <∞. Suppose

that f1 ≤ f2 ≤ · · · and supk ‖fk‖p <∞. Show that (fk)
∞
k=1 converges in Lp norm.

Question 8 [10 points] Let f be a Lebesgue integrable function on [0, 1] and denote
Lebesgue measure by λ. Suppose that 0 < α < 1. Show that for almost all t ∈ [0, 1],

the function Ft(x) = f(x)|x− t|−α is integrable on [0, 1]. Define g(t) =
∫ 1

0
Ft dλ where

the integral exists and 0 otherwise. Show that g ∈ L1[0, 1].

Question 9 [10 points] Let a, b ∈ R with a < b and let f : (a, b) → R be a continuous
function. Define F to be the set of all x ∈ (a, b) such that f ′(x) exists (as a real
number). For each k ∈ N, and any p, q, q′ ∈ Q with a < q < q′ < b, define

H(k, p, q, q′) = {x ∈ (q, q′) : |f(y)− f(x)− p(y − x)| ≤ |y − x|
k

for all y ∈ (q, q′)}.

Express F in terms of the sets H(k, p, q, q′) and deduce that F is a Borel set.

Question 10 [10 points] Suppose that 1 ≤ p <∞. Show that there is a linear bijection

T : Lp[0, 1]→ Lp(R) such that
∫

R |Tf |
p dλ =

∫ 1

0
|f |p dλ for all f ∈ Lp[0, 1], where λ is

Lebesgue measure.
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