NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 2 2011-2012

Ph.D. QUALIFYING EXAMINATION

Paper 2

ANALYSIS
Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

1. This examination contains a total of TEN (10) questions and comprises THREE (3) printed pages.
2. Answer ALL questions. The maximum score for this examination is 100 points.
3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Question 1 [10 points] For each of the following statements, prove it if it is true and provide a counterexample if it is false.
(a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function so that the directional derivative of f in any direction exists at $(0,0)$. Then f is differentiable at $(0,0)$.
(b) Let U be a connected open set in \mathbb{C} and let $f: U \rightarrow \mathbb{C}$ be an analytic function. If there exists $z_{0} \in U$ such that $\operatorname{Re} f\left(z_{0}\right) \geq \operatorname{Re} f(z)$ for any $z \in U$, then f is constant on U.

Question 2 [10 points] Let X be a compact metric space. Show that there is a sequence of open sets $\left(U_{n}\right)_{n=1}^{\infty}$ in X such that for any $x_{0} \in X$ and any closed set F in X not containing x_{0}, there exists n so that $x_{0} \in U_{n}$ and $\overline{U_{n}} \cap F=\emptyset$.

Question 3 [10 points] Let f be a complex function that is analytic on an open set containing the closed ball $\{z \in \mathbb{C}:|z| \leq 1\}$. Assume that $f(0) \neq 0$ and that $f(z) \neq 0$ for any z with $|z|=1$. Suppose that $\left(a_{k}\right)_{k=1}^{n}$ are the distinct zeros of f in $\{z \in \mathbb{C}:|z|<1\}$, with respective multiplicities $\left(m_{k}\right)_{k=1}^{n}$. Show that

$$
\sum_{k=1}^{n} \frac{m_{k}}{a_{k}^{2}}=\int_{C} \frac{f^{\prime}(z)}{z f(z)} d z-\frac{f^{\prime}(0)}{f(0)}
$$

where C is the circle $\{z:|z|=1\}$, traversed once in the counterclockwise direction.

Question $4 \quad[10$ points $]$ Let $f:[0,1] \rightarrow \mathbb{R}$ be a Lebesgue integrable function. Denote Lebesgue measure by λ. Show that the series

$$
s_{n}=\sum_{k=-\infty}^{\infty} \frac{k}{2^{n}} \lambda\left(\left\{x: \frac{k}{2^{n}}<f(x) \leq \frac{k+1}{2^{n}}\right\}\right)
$$

converges absolutely for each $n \in \mathbb{N}$, and that $\lim _{n \rightarrow \infty} s_{n}=\int_{0}^{1} f d \lambda$.

Question $5 \quad[10$ points $]$ For any $n \in \mathbb{N}$, the n-th Rademacher function $r_{n}:[0,1] \rightarrow \mathbb{R}$ is defined by

$$
r_{n}(t)= \begin{cases}(-1)^{k+1} & \text { if } t \in\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right), 1 \leq k \leq 2^{n} \\ 0 & \text { if } t=1\end{cases}
$$

Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} f r_{n} d \lambda=0$ for any $f \in L^{1}[0,1]$. Here λ denotes Lebesgue measure.

Question 6 [10 points] Let $f, g:[0,1] \rightarrow \mathbb{R}$ be integrable functions with respect to Lebesgue measure λ. Assume that for any $a, b \in \mathbb{R}$

$$
\lambda(\{t: f(t) \leq a\} \cap\{t: g(t) \leq b\})=\lambda\{t: f(t) \leq a\} \cdot \lambda\{t: g(t) \leq b\}
$$

Show that $f g$ is integrable on $[0,1]$ with respect to Lebesgue measure and that

$$
\int_{[0,1]} f g d \lambda=\int_{[0,1]} f d \lambda \cdot \int_{[0,1]} g d \lambda .
$$

Question $7 \quad$ [10 points] Let $\left(f_{k}\right)_{k=1}^{\infty}$ be a sequence in $L^{p}(\mathbb{R})$, where $1 \leq p<\infty$. Suppose that $f_{1} \leq f_{2} \leq \cdots$ and $\sup _{k}\left\|f_{k}\right\|_{p}<\infty$. Show that $\left(f_{k}\right)_{k=1}^{\infty}$ converges in L^{p} norm.

Question 8 [10 points] Let f be a Lebesgue integrable function on [0, 1] and denote Lebesgue measure by λ. Suppose that $0<\alpha<1$. Show that for almost all $t \in[0,1]$, the function $F_{t}(x)=f(x)|x-t|^{-\alpha}$ is integrable on $[0,1]$. Define $g(t)=\int_{0}^{1} F_{t} d \lambda$ where the integral exists and 0 otherwise. Show that $g \in L^{1}[0,1]$.

Question 9 [10 points] Let $a, b \in \mathbb{R}$ with $a<b$ and let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function. Define F to be the set of all $x \in(a, b)$ such that $f^{\prime}(x)$ exists (as a real number). For each $k \in \mathbb{N}$, and any $p, q, q^{\prime} \in \mathbb{Q}$ with $a<q<q^{\prime}<b$, define

$$
H\left(k, p, q, q^{\prime}\right)=\left\{x \in\left(q, q^{\prime}\right):|f(y)-f(x)-p(y-x)| \leq \frac{|y-x|}{k} \text { for all } y \in\left(q, q^{\prime}\right)\right\}
$$

Express F in terms of the sets $H\left(k, p, q, q^{\prime}\right)$ and deduce that F is a Borel set.

Question 10 [10 points] Suppose that $1 \leq p<\infty$. Show that there is a linear bijection $T: L^{p}[0,1] \rightarrow L^{p}(\mathbb{R})$ such that $\int_{\mathbb{R}}|T f|^{p} d \lambda=\int_{0}^{1}|f|^{p} d \lambda$ for all $f \in L^{p}[0,1]$, where λ is Lebesgue measure.

