Ph.D. Qualifying Examination 2011 August (Analysis)

(1) Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$. If $\left\{b_{k}\right\}$ is a permutation of $\left\{a_{k}\right\}$, show that

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty} a_{k} . \tag{10}
\end{equation*}
$$

(2) Let f be a finite measurable function on E with $|E|<\infty$. Show that given any $\varepsilon>0$, there exist $N \in \mathbb{N}$ and a compact set $F \subset E$ such that $|E \backslash F|<\varepsilon$ and $|f(x)|<N$ for $x \in F$.
(3) If $f: \mathbb{C} \rightarrow \mathbb{C}$ is bounded analytic on a deleted neighborhood of a point z_{0}, show that z_{0} is a removable singularity of f.
(4) Let $f_{n}, f: \mathbb{R} \rightarrow \mathbb{R}$ be measurable functions. If $f_{n} \rightarrow f$ in measure and $f_{n} \geq 0$ for all n, show that

$$
\int f d x \leq \liminf _{n \rightarrow \infty} \int f_{n} d x
$$

(5) Let f be an entire function. Suppose for each $z \in \mathbb{C}$, there exists $n \in \mathbb{N}$ such that $f^{(n)}(z)=0$. Show that f must be a polynomial.
(6) Let $1 \leq p<\infty$. Show that there exists $C>0$ such that

$$
\left(\int\left|\sum_{i=1}^{\infty} a_{i} \chi_{2 Q_{i}}\right|^{p} d x\right)^{1 / p} \leq C\left(\int\left|\sum_{i=1}^{\infty}\right| a_{i}\left|\chi_{Q_{i}}\right|^{p} d x\right)^{1 / p}
$$

for any sequence of real numbers a_{i}, cubes $Q_{i}\left(2 Q_{i}\right.$ is the cube with the same center as Q_{i} but twice its length).
(7) (i) Let $R=[a, b] \times[c, d]$ be a rectangle in \mathbb{R}^{2}. Let $u: R \rightarrow \mathbb{R}$ be a twice continuously differentiable function. Prove (without using divergence theorem) by using integration by parts or direct integration that

$$
\int_{R}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) d A=\int_{\partial R} \nabla u \cdot \vec{n} d s
$$

where \vec{n} is the outward unit normal vector.
(ii) Let $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f$ on a domain Ω in \mathbb{R}^{2}. If ϕ is any C^{∞} function that vanishes outside a compact subset of Ω, show that

$$
\int_{\Omega} \phi f d A=-\int_{\Omega} \nabla u \cdot \nabla \phi d A
$$

(8) Prove or disprove Eight (8) of the following statements.
(a) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz continuous, that is, for all $x \in \mathbb{R}$, there exist $L_{x}, \delta_{x}>0$ such that

$$
|f(x)-f(y)| \leq L_{x}|x-y| \text { if }|y-x|<\delta_{x} .
$$

Then $f(E)$ is measurable whenever E is measurable.
(b) Let $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ be a continuous function. If Ω is simply connected and $\int_{\gamma} f(z) d z=0$ for any closed contour γ in Ω, then f is analytic on Ω.
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and nonnegative, then $f=\sum_{k=1}^{\infty} \frac{1}{k} \chi_{A_{k}}$ where A_{k} are measurable sets.
(d) Let $\Omega=\{z \in \mathbb{C}: 1<|z|<3\}$ and f is a bounded analytic function on Ω. If there exists $z_{0} \in \mathbb{C},\left|z_{0}\right|=2$ such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all $z \in \Omega$, then $|f(z)|=\left|f\left(z_{0}\right)\right|$ for all $z \in \Omega$.
(e) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable a.e., then its derivative is measurable.
(f) If $\left\{a_{k}\right\}$ is a monotone sequence of real numbers that converges to 0 , then $\sum_{k=1}^{\infty} a_{k} \cos k x$ converges for almost all $x \in \mathbb{R}$.
(g) If a function is continuous a.e., then it is measurable.
(h) Let $f:[a, b] \rightarrow \mathbb{R}$. If there exists $M>0$ such that for all $a<x_{0}<x_{1} \cdots<x_{n}<b$,

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \leq M
$$

then f is a function of bounded variation on $[a, b]$.
(i) Let $\left\{f_{n}\right\},\left\{g_{n}\right\}$ be two sequences of measurable functions on \mathbb{R} such that $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g_{n}$ a.e.. If there exists a measurable function g such that

$$
\lim _{n \rightarrow \infty} \int g_{n} d x=\int g d x
$$

then

$$
\lim _{n \rightarrow \infty} \int f_{n} d x=\int f d x
$$

(j) Let $f:[-1,1] \times[-1,1] \rightarrow \mathbb{R}$. If for each $x, y \in \mathbb{R} \backslash\{0\}$, there exists L such that

$$
\lim _{t \rightarrow 0}|f(x t, y t)-f(-x t,-y t)-L t| / t=0,
$$

then f is differentiable at $(0,0)$.

