NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 2 EXAMINATION, AY 2010/2011

MA2101 Linear Algebra II

May 2011 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- This examination paper contains a total of EIGHT (8) questions and comprises FIVE
 printed pages.
- 2. Answer **ALL** questions.
- 3. Marks for each question are indicated at the beginning of the question. The marks for questions are not necessarily the same.
- 4. Calculators may be used. However, various steps in the calculations should be systematically laid out.

PAGE 2 MA2101

Question 1 [15 marks]

Let V and W be vector spaces and let

$$\varphi:V\to W$$

be a surjective linear transformation.

(a) Let V_1 be a subspace of V. Show that the image

$$\varphi(V_1) = \{ \varphi(\mathbf{v}) \, | \, \mathbf{v} \in V_1 \}$$

of V_1 is a subspace of W.

- (b) Let S be a non-empty subset of W.
- (bi) Show that the pre-image

$$\varphi^{-1}(S) = \{ \mathbf{v} \in V \mid \varphi(\mathbf{v}) \in S \}$$

of S is a subspace of V if and only if S is a subspace of W.

- (bii) Is (bi) still true if φ is not surjective? Justify your answer.
- (c) Fix a vector $\mathbf{w}_0 \in W$. Suppose that the pre-image

$$\varphi^{-1}(\mathbf{w}_0) := \{ \mathbf{v} \in V \,|\, \varphi(\mathbf{v}) = \mathbf{w}_0 \}$$

is a subspace of V. Show that $\varphi^{-1}(\mathbf{w}_0)$ equals the kernel

$$\operatorname{Ker}(\varphi) = \{ \mathbf{v} \in V \, | \, \varphi(\mathbf{v}) = \mathbf{0} \}.$$

Question 2 [10 marks]

Let U and W be subspaces of a vector space V over a field F. Suppose that

$$V = U + W$$
.

Define the following map between U and the quotient space V/W:

$$f: U \to V/W = \{ \overline{\mathbf{v}} = \mathbf{v} + W \mid \mathbf{v} \in V \},$$

 $\mathbf{u} \mapsto f(\mathbf{u}) := \overline{\mathbf{u}}.$

- (i) Show that f is a linear transformation.
- (ii) Show that f is surjective.
- (iii) Show that f is an isomorphism if and only if $V = U \oplus W$, i.e., V is a direct sum of U and W.

PAGE 3 MA2101

Question 3 [10 marks]

Let $A \in M_n(\mathbf{C})$ be a complex matrix such that $A^n = A$.

- (a) Is A diagonalizable over \mathbb{C} ? Justify your answer.
- (b) Find all possible Jordan canonical forms of A. Justify your answers.

Question 4 [10 marks]

Let $B \in M_n(\mathbf{C})$ be an invertible complex matrix. Prove that there are matrices B_s , B_u in $M_n(\mathbf{C})$ such that the following three conditions are satisfied (justification should be clearly given in deducing (i) - (iii)):

- (i) $B = B_s B_u$;
- (ii) B_s is diagonalizable over \mathbb{C} , and 1 is the only eigenvalue of B_u ; and
- (iii) $B_s B_u = B_u B_s$.

Question 5 [10 marks]

Let (V, \langle, \rangle) be a complex inner product space. Let W be a subspace of V and let B_1 be an orthonormal basis of W. Extend B_1 to a basis B' of V and apply the Gram-Schmidt process to B' to get an orthonormal basis $B = (B_1, B_2)$ of V. Define

$$W^{\perp} := \{ \mathbf{v} \in V \, | \, \langle \mathbf{v}, \mathbf{w} \rangle = 0, \, \forall \, \mathbf{w} \, \in W \}.$$

- (i) Show that $W^{\perp} = \operatorname{Span}(B_2)$.
- (ii) Show that $V = W \oplus W^{\perp}$.
- (iii) Suppose that $T: V \to V$ is a linear operator such that W is T^* -invariant, where T^* is the adjoint of T. Show that W^{\perp} is T-invariant.

... - 4 -

PAGE 4 MA2101

Question 6 [15 marks]

Let V be an n-dimensional vector space over a field F. Let U be the transition matrix from a basis B_2 of V to another basis B_1 of V so that $B_2 = B_1 U$.

- (a) Show that U is an invertible matrix in $M_n(F)$.
- (b) Suppose further that $F = \mathbf{C}$ and (V, \langle, \rangle) is a complex inner product space and B_1 and B_2 are two orthonormal bases of V. Show that the transition matrix U in (a) is a unitary matrix, i.e., $U^*U = I_n$, where $U^* := \overline{(U^t)}$ is the adjoint, i.e., conjugate transpose of U.

Question 7 [15 marks]

(a) Let $T: V \to V$ be a linear operator on a finite-dimensional complex vector space V. Suppose that λ is a zero of the minimal polynomial $m_T(x)$ of multiplicity m_1 , i.e., $(x - \lambda)^{m_1} | m_T(x)$ and $(x - \lambda)^{m_1+1} / m_T(x)$. Show that

$$\operatorname{Ker}(T - \lambda I_V)^{m_1} = \operatorname{Ker}(T - \lambda I_V)^r$$

for all $r \geq m_1$.

Note. You may assume, without proof, the fact that if $f_1(x)$ and $f_2(x)$ are complex polynomials with no common zero then $f_1(x)u(x) + f_2(x)v(x) = 1$ for some complex polynomials u(x) and v(x).

(b) Let $A \in M_n(\mathbf{C})$ be a complex matrix. Suppose that

$$A = A_s + A_n$$

is an (additive) Jordan decomposition such that A_s is diagonalizable, A_n is nilpotent,

$$A_s A_n = A_n A_s$$

and

$$A_s = f(A), \quad A_n = g(A)$$

for some polynomials f(x), g(x). Show that if

$$A = A'_s + A'_n$$

is another decomposition such that A_s^\prime is diagonalizable, A_n^\prime is nilpotent and

$$A_s'A_n'=A_n'A_s'$$

then

$$A_s' = A_s, \quad A_n' = A_n.$$

PAGE 5 MA2101

Question 8 [15 marks]

For complex numbers $x_1, \ldots, x_n; y_1, \ldots, y_n$, denote by

$$X = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix}, \quad Y = (y_1, \dots, y_n),$$
$$X^t = (x_1, \dots, x_n), \quad \overline{Y} = (\overline{y_1}, \dots, \overline{y_n}).$$

(a) Let $D \in M_n(\mathbf{C})$ be a positive definite complex matrix. Let W be an n-dimensional complex vector space with a basis $(\mathbf{w}_1, \dots, \mathbf{w}_n)$. Show that the function below

$$W \times W \to \mathbf{C},$$

$$(\sum_{i=1}^{n} x_i \mathbf{w}_i, \sum_{j=1}^{n} y_j \mathbf{w}_j) \mapsto X^t D \overline{Y}$$

defines a complex inner product so that (W, \langle, \rangle) is a complex inner product space, i.e., to verify the three conditions in the definition of an inner product space.

(b) Let (V, \langle, \rangle) be an *n*-dimensional (not necessarily standard) complex inner product space. Let $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ be a (not necessarily orthonormal) basis of V. Set

$$a_{ij} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle, \quad A := (a_{ij}) \in M_n(\mathbf{C}).$$

(bi) Show that

$$\langle \sum_{i=1}^n x_i \mathbf{v}_i, \sum_{j=1}^n y_j \mathbf{v}_j \rangle := X^t A \overline{Y}.$$

- (bii) Show that the matrix A is self-adjoint, i.e., $A^* = A$.
- (biii) Show that the matrix A is positive definite, i.e., (A is self-adjoint and)

$$X^t A \overline{X} > 0$$

for all nonzero column vector X.