MA4262 Mid-term test 2010

(1) Suppose f is an extended real valued function on a Borel measurable set E such that $\{x \in E : f(x) > \frac{k}{5^n}\}$ is a Borel set for all $k \in \mathbb{Z}, n \in \mathbb{N}$.

Show that f is Borel measurable. [15]

- (2) If f is an integrable function on a measurable set E and $E = \bigcup_{i=1}^{\infty} E_i$ such that each E_i is measurable and $E_i \cap E_j = \emptyset$ when $i \neq j$, show that $\sum_{i=1}^{\infty} \int_{E_i} f = \int_{E} f$. [15]
- (3) If f is a measurable function on a set E with $m(E) < \infty$ and $|f(x)| < \infty$ for almost all $x \in E$, show that given any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ and a compact set K such that $m(E \setminus K) < \varepsilon$ and |f(x)| < N for all $x \in K$. [15].
- (4) For $a, b \in [0, 1)$, we define $a \dotplus b = a + b$ if a + b < 1 and a + b 1 if $a + b \ge 1$. If $A \subset [0, 1)$ and $A \dotplus a = \{x \dotplus a : x \in A\}$, show that $m^*(A \dotplus a) = m^*(A)$ (for any $a \in [0, 1)$). [15].
- (5) Prove or disprove each of the following statements. (Answer not more than five of them)
 [40]
 - (a) If f is absolutely continuous function on [a, b], then it is a difference of two continuous nondecreasing function on [a, b].
 - (b) If f is a function of bounded variation on [a, b], then f is continuous on [a, b]
 - (c) If f is integrable on E, then given any $\varepsilon > 0$, there exists a compact set $K \subset E$ such that $\int_{E \setminus K} |f| < \varepsilon$.
 - (d) If f = g a.e. and g is continuous on [0, 1], then f is continuous a.e..
 - (e) If E is measurable, then given any $\varepsilon > 0$, there exists a finite union of pairwise disjoint closed intervals G such that $m(E\triangle G) < \varepsilon$.
 - (f) A step function on [0,1] is always measurable.
 - (g) If E is a measurable set in \mathbb{R} , then $m(E) = \sup\{m(K) : K \text{ is a compact subset of } E\}$.
- (6) If $f_k \ge 0$ for all k and $f_k \to f$ in measure, show that [Bonus 5]

$$\liminf_{k \to \infty} \int f_k \ge \int f.$$