NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

Qualification Examination

Analysis

August, 2010 - Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper comprises THREE (3) printed pages.
2. This paper consists of EIGHT (8) questions. Answer ALL of them. Marks for each question are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Answer all the questions in this paper

Question 1 [10 marks]
(a) Consider the complex valued function $f(x+i y)=\left(x^{2}+y^{2}\right)+(x y) i$. Is f holomorphic on \mathbf{C} ? If not, find a complex valued function $g(x+i y)=u(x, y)+i v(x, y)$ with $v(x, y)=$ $3 x^{2} y-y^{3}$ such that $h:=f+g$ is holomorphic on \mathbf{C}.
(b) Let h be the holomorphic function found in (a). Let Ω be the set $\{h(z):|z| \leq 1\}$. Find the area of Ω.

Question 2 [10 marks]

Let f be a holomorphic function on \mathbf{C}. Suppose there exists a natural number n such that the limit, $\lim _{z \rightarrow \infty} \frac{f(z)}{z^{n}}=M$, exists for some constant M. Show that f is a polynomial with degree less than or equal to n.

Question 3 [15 marks]

Let u be a continuous, positive, integrable function on the interval $[0, \infty)$. Suppose there exist two positive constants a and b such that $\frac{d u}{d t} \leq u(a+b u)$. Show that $\lim _{t \rightarrow \infty} u=0$.

Question 4 [15 marks]

Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions on a measurable set E. If for any $\epsilon>0, \sum_{n=1}^{\infty}\left|\left\{x \in E: f_{n}(x)>\epsilon\right\}\right|<\infty$, show that $\lim _{n \rightarrow \infty} f_{n}(x)=0$, a.e. on the set E. Is the converse also true? Justify your answer.

Question 5 [10 marks]
Let h be a holomorphic function from the unit disk into itself. If $h(0)=h^{\prime}(0)=\cdots=$ $h^{(k)}(0)=0$ for some integer $k>0$, show that $|h(z)| \leq|z|^{k+1}$ for all $|z| \leq 1$. Further show that there exists a z_{0} with $\left|z_{0}\right|<1$ such that $\left|h\left(z_{0}\right)\right|=\left|z_{0}\right|^{k+1}$ if and only if $h(z)=e^{i \theta} z^{k+1}$ for some constant $\theta \in[0,2 \pi)$.

Question 6 [10 marks]
Use two methods to show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n^{3 / 2} x}{1+n^{2} x^{2}} d x=0
$$

Question 7 [15 marks]
Let $\left\{x_{n}\right\}$ be a strictly monotone increasing sequence with $x_{0} \geq 0$. Show that the series

$$
\sum_{n=1}^{\infty}\left(1-\frac{x_{n}}{x_{n+1}}\right)
$$

converges if $\left\{x_{n}\right\}$ is bounded and diverges if $\left\{x_{n}\right\}$ is unbounded. (Hint: set $d_{k}=x_{k+1}-x_{k}$ for $k \geq 1$. Express the series in terms of d_{n}.)

Question 8 [15 marks]
Let $\varphi_{1}(x, y, z)$ and $\varphi_{2}(x, y, z)$ be continuously differentiable functions up to order 2 in the domain $\left\{(x, y, z): x^{2}+y^{2}+z^{2}<4\right\}$. Show that (1) $\nabla \varphi_{1} \times \nabla \varphi_{2}=\operatorname{Curl}\left(\varphi_{1} \nabla \varphi_{2}\right)$ where Curl $V=\nabla \times V$ for any vector field V and $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ for any real valued function f; (2) the total flux $\oint_{\Sigma} A \cdot \overrightarrow{d S}$ of the vector $A=\nabla \varphi_{1} \times \nabla \varphi_{2}$ through the surface $\Sigma:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$ is zero, where $\overrightarrow{d S}$ is the oriented surface area element.

