NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

MA2101 Linear Algebra II

SEMESTER 2 EXAMINATION 2009-2010

April 2010 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of TWO (2) sections. It contains SEVEN (7) questions and comprises FOUR (4) printed pages.
- 2. Answer ALL questions in Section A. Section A carries a total of 60 marks.
- **3.** Answer not more than **TWO** (2) questions in **Section B**. Each question in **Section B** carries 20 marks.
- **4.** Calculators may be used. However, various steps in the calculations should be laid out systematically.

PAGE 2 MA2101

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1 [15 Marks]

Let V be a real vector space with basis $B = \{v_1, v_2, v_3, v_4\}$.

Define $W_1 = \text{span}\{v_1 + v_2, v_2 + v_3, v_3 + v_4, v_1 + v_4\}$ and $W_2 = \text{span}\{v_4\}$.

- (a) Find the dimensions of W_1 , W_2 , $W_1 \cap W_2$ and $W_1 + W_2$.
- (b) Is $V = W_1 \oplus W_2$? Justify your answer.
- (c) Give an example of a subspace of V such that $V = W_1 \oplus U$ and $U \neq W_2$.

Question 2 [15 Marks]

Let $T: V \to W$ be a linear transformation. For $X \subseteq V$, define $T(X) = \{T(\boldsymbol{u}) \mid \boldsymbol{u} \in X\}$.

- (a) Let X be a subspace of V. Show that T(X) is a subspace of W.
- (b) Let $V = W = \mathbb{R}^3$ and T((x, y, z)) = (x y, y z, z x) for $(x, y, z) \in \mathbb{R}^3$.
 - (i) Find nullity(T) and rank(T).
 - (ii) Let $X = \{(x, x, z) \mid x, z \in \mathbb{R}\}$. Write down T(X) explicitly and find its dimension.

Question 3 [15 Marks]

Let
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -2 & 1 \\ -1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_{4\times 4}(\mathbb{R}).$$

- (a) Compute the characteristic polynomial of A.
- (b) Determine the dimension of the eigenspace of A associated with the eigenvalue 2.
- (c) Find a Jordan canonical form for \boldsymbol{A} .

PAGE 3 MA2101

Question 4 [15 Marks]

Suppose $\mathcal{M}_{n\times n}(\mathbb{C})$ is equipped with the usual inner product.

(a) Let T be the linear operator on $\mathcal{M}_{n\times n}(\mathbb{C})$ defined by

$$T(\mathbf{X}) = \mathbf{B}\mathbf{X}$$
 for $\mathbf{X} \in \mathcal{M}_{n \times n}(\mathbb{C})$

where \boldsymbol{B} is an $n \times n$ complex matrix.

- (i) Find the adjoint of T.
- (ii) Prove that T is unitarily diagonalizable if and only if \mathbf{B} is normal.
- (b) Suppose T_1, T_2, T_3 are linear operators on $\mathcal{M}_{2\times 2}(\mathbb{C})$ defined by

$$T_j(\boldsymbol{X}) = \boldsymbol{B_j} \boldsymbol{X}$$
 for $\boldsymbol{X} \in \mathcal{M}_{2 \times 2}(\mathbb{C})$

where
$$\mathbf{B_1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\mathbf{B_2} = \begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix}$ and $\mathbf{B_3} = \begin{pmatrix} 1 & i \\ -i & 0 \end{pmatrix}$.

For j = 1, 2, 3, determine whether T_j is unitarily diagonalizable.

SECTION B

Answer not more than **two** questions from this section. Each question in this section carries 20 marks.

Question 5 [20 Marks] (All vectors of \mathbb{R}^n and \mathbb{R}^m in this question are column vectors.) Let \mathbf{A} be an $m \times n$ real matrix and $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k} \in \mathbb{R}^n$.

(a) Show that if Av_1, Av_2, \ldots, Av_k are linearly independent vectors in \mathbb{R}^m , then v_1, v_2, \ldots, v_k are linearly independent vectors in \mathbb{R}^n .

Let N be the nullspace of \mathbf{A} , i.e. $N = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{u} = \mathbf{0} \}$.

- (b) Prove that Av_1, Av_2, \ldots, Av_k are linearly independent vectors in \mathbb{R}^m if and only if $N + v_1, N + v_2, \ldots, N + v_k$ are linearly independent vectors in \mathbb{R}^n/N .
- (c) Give an example of a non-zero 2×2 real matrix \boldsymbol{A} and $\boldsymbol{v_1}, \boldsymbol{v_2} \in \mathbb{R}^2$ such that $\boldsymbol{v_1}, \boldsymbol{v_2}$ are linearly independent but $\boldsymbol{Av_1}, \boldsymbol{Av_2}$ are linearly dependent. With your example, write down a basis for $\{\boldsymbol{Au} \mid \boldsymbol{u} \in \mathbb{R}^2\}$ and a basis for \mathbb{R}^2/N .

PAGE 4 MA2101

Question 6 [20 Marks]

Let V be a finite dimensional vector space.

- (a) Let S and T be linear operators on V and W a subspace of V. Suppose W is both S-invariant and T-invariant. Show that W is $(S \circ T)$ -invariant and $(S \circ T)|_{W} = (S|_{W}) \circ (T|_{W})$.
- (b) Let S and T be linear operators on V such that $S \circ T = T \circ S$. Suppose E_{λ} is an eigenspace of T associated with an eigenvalue λ . Prove that E_{λ} is S-invariant.
- (c) Let T_1, T_2, \ldots, T_n be diagonalizable linear operators on V such that $T_i \circ T_j = T_j \circ T_i$ for all $i, j \in \{1, 2, \ldots, n\}$. Prove that there exists an ordered basis B for V such that $[T_1]_B, [T_2]_B, \ldots, [T_n]_B$ are diagonal matrices.

(Hint: If T is a diagonalizable linear operator on V and W is a T-invariant subspace of V, then $T|_{W}$ is a diagonalizable linear operator on W.)

Question 7 [20 Marks]

- (a) Let P be a linear operator on a vector space V such that $P^2 = P$. Prove that $V = R(P) \oplus \operatorname{Ker}(P)$.

 (Warning: V may be infinite dimensional.)
- (b) Give an example of a linear operator P on $V = \mathbb{R}^2$ such that $P^2 = P$ but $P \neq O_V$ and $P \neq I_V$, where O_V is the zero operator on V and I_V is the identity operator on V. With your example P, write down R(P) and Ker(P) explicitly.
- (c) Suppose V is an inner product space. Let P be a linear operator on V such that $P^2 = P$ and $\langle P(\boldsymbol{u}), \boldsymbol{u} P(\boldsymbol{u}) \rangle = 0$ for all $\boldsymbol{u} \in V$. Prove that $\operatorname{Ker}(P) = \operatorname{R}(P)^{\perp}$.

[END OF PAPER]