NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2009-2010

MA5213 ADVANCED PARTIAL DIFFERENTIAL EQUATIONS

December 2009 — Time allowed: 2.5 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **FIVE** (5) questions and comprises **FOUR** (4) printed pages including this page.
- 2. Answer **ALL** questions. The marks for questions are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA5213

Question 1 [20 marks]

Let $u \in C^1_{loc}(\mathbf{R}^n)$ and assume it satisfies the following condition:

$$\int_{\mathbf{R}^n} \sum_{i,j=1}^n a^{ij} D_i u D_j \phi \, dx = 0 \quad \text{for all } \phi \in H_0^1(\mathbf{R}^n), \tag{1}$$

where a^{ij} are constants, $a^{ij}=a^{ji}$ for all $1\leq i,j\leq n$, and there exist constants $0<\lambda<\Lambda$ such that

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a^{ij} \xi_i \xi_j \le \Lambda |\xi|^2$$
 for all $x \in \mathbf{R}^n$, $\xi = (\xi_1, \dots, \xi_n) \in \mathbf{R}^n$.

- (a) Prove that u is a C^{∞} function.
- (b) Assume u is also bounded in \mathbb{R}^n . Prove that u is constant on \mathbb{R}^n .
- (c) Assume now a^{ij} are continuous functions for all $1 \le i, j \le n$. Is the conclusion (b) still true? Prove your answer.

Question 2 [15 marks]

Let Ω be an open subset of \mathbf{R}^n with boundary portion $T \subseteq \{x \in \mathbf{R}^n : x_n = 0\}$, and let (a^{ij}) be an $n \times n$ constant matrix which is positive-definite, that is, there exist positive constants λ and Λ , $0 < \lambda < \Lambda$, such that

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a^{ij} \xi_i \xi_j \le \Lambda |\xi|^2, \quad \xi \in \mathbf{R}^n.$$

Assume $u \in C^2(\Omega) \cap C(\Omega \cup T)$ and it solves the following problem

$$\sum_{i,j=1}^{n} a^{ij} D_{ij} u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } T,$$
(2)

where $f \in C^{\alpha}(\Omega \cup T)$ and $0 < \alpha < 1$. Use the $C^{2+\alpha}$ estimates of harmonic functions to prove that there exists a constant $C = C(n, \alpha, \lambda, \Lambda)$ such that

$$|u|_{2,\alpha;\Omega\cup T}^* \le C(|u|_{0;\Omega} + |f|_{0,\alpha;\Omega\cup T}^{(2)}).$$

PAGE 3 MA5213

Question 3 [20 marks]

Let Ω be a bounded domain in ${\bf R}^n$ with smooth boundary. Consider the following boundary value problem

$$Lu = f \text{ in } \Omega, \qquad u = \varphi \text{ on } \partial\Omega,$$
 (3)

where the operator L is defined by

$$Lu \equiv \sum_{i,j=1}^{n} a^{ij}(x) D_{ij} u + \sum_{i=1}^{n} b^{i}(x) D_{i} u + c(x) u,$$

with $a^{ij}=a^{ji}$ for all $1 \leq i,j \leq n$. Assume there exist constants $0 < \lambda < \Lambda$ such that

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a^{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2 \quad \text{for all } x \in \bar{\Omega}, \ \xi \in \mathbf{R}^n.$$

- (i) State the Schauder estimate for the classical solution of the boundary value problem (3). More precisely, state the conditions on the coefficients $a^{ij}(x)$, $b^i(x)$ and c(x), on f and φ , and state the conclusion.
 - (ii) Give a **short outline** of the proof of the Schauder estimate.

Question 4 [20 marks]

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the following boundary value problem

$$Lu = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial\Omega,$$
 (4)

where the operator L is defined by

$$Lu \equiv \sum_{i,j=1}^{n} D_j \left(a^{ij}(x) D_i u \right) + \sum_{i=1}^{n} b^i(x) D_i u + c(x) u,$$

with $a^{ij}=a^{ji}$ for all $1\leq i,j\leq n$. Assume there exist constants $0<\lambda<\Lambda$ such that

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a^{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2 \quad \text{for all } x \in \bar{\Omega}, \ \xi \in \mathbf{R}^n.$$

- (i) State the H^2 estimate for the weak solution of the boundary value problem (4). More precisely, state the conditions on the coefficients $a^{ij}(x)$, $b^i(x)$ and c(x) and on f, and state the conclusion.
 - (ii) Give a **short outline** of the proof of the H^2 estimate.

PAGE 4 MA5213

Question 5 [25 marks]

Let Ω be a bounded domain in \mathbf{R}^n with $n \geq 3$, and $u \in H^1(\Omega)$ be a weak subsolution of the equation

$$\sum_{i,j=1}^{n} D_{j} \left(a^{ij}(x) D_{i} u \right) + \sum_{i=1}^{n} b^{i}(x) D_{i} u + c(x) u = \text{div } \mathbf{g}(x),$$

where $a^{ij}(x)$, $b^i(x)$ and c(x) are measurable functions on $\bar{\Omega}$, $a^{ij}(x) = a^{ji}(x)$ for all $1 \le i, j \le n$. Assume there exist positive constants λ , Λ and μ such that, for all $x \in \Omega$ and $\xi = (\xi_1, \dots, \xi_n) \in \mathbf{R}^n$,

$$|\lambda|\xi|^2 \le \sum_{i,j=1}^n a^{ij}(x)\xi_i\xi_j \le \Lambda|\xi|^2, \qquad \sum_{i=1}^n \frac{|b^i(x)|^2}{\lambda^2} + \frac{|c(x)|}{\lambda} \le \mu^2,$$

and

$$\mathbf{g} \in L^q(\Omega, \mathbf{R}^n), \quad \|\mathbf{g}\|_{L^q(\Omega)} > 0$$

for some q > n.

Assume also u is a **bounded** function in $\bar{\Omega}$ and $u \leq 0$ on $\partial\Omega$. Use the DiGiorgi-Moser iteration method to show that there exists a constant $C = C(n, q, \mu, |\Omega|) > 0$ such that

$$\sup_{\Omega} u \le C(\|u^{+}\|_{L^{2}(\Omega)} + \lambda^{-1}\|\mathbf{g}\|_{L^{q}(\Omega)}).$$

END OF PAPER