NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2009-2010

MA5203 Graduate Algebra I

November 2009 — Time allowed : $2\frac{1}{2}$ hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **THREE** (3) questions and comprises **THREE** (3) printed pages.
- 2. Answer **ALL** questions. Marks for each question may not be the same; they are indicated in the beginning of the question.

PAGE 2 MA5203

Answer all questions.

Question 1 [30 marks]

Let G be a finite group.

- (a) Let p be the least prime divisor of G. Prove that any subgroup of G of index p is normal in G.
- (b) Let q be a prime divisor of G, and suppose that whenever Q_1 and Q_2 are two distinct Sylow q-subgroups of G, $Q_1 \cap Q_2$ is a subgroup of Q_1 of index at least q^a . Show that the number n_q of Sylow q-subgroups of G satisfies $n_q \equiv 1 \pmod{q^a}$.
- (c) Suppose that |G| = 432 (= $2^4 \cdot 3^3$). Show that G is not simple. (You may NOT assume Burnside's $p^a q^b$ Theorem without proof.)

Question 2 [40 marks]

Let p be a prime integer, and let $n \in \mathbb{Z}^+$. Recall that an element ζ in a field extension of \mathbb{F}_p is a primitive n-root of unity if and only if $\zeta^n = 1$ and $\zeta^i \neq 1$ for all $1 \leq i < n$.

- (a) Show that if p divides n in \mathbb{Z} , then primitive n-root of unity does not exist in any field extension of \mathbb{F}_p .
- (b) Suppose that p does not divide n in \mathbb{Z} , and let k be the order of p in \mathbb{Z}_n^* . Show that \mathbb{F}_{p^m} has a primitive n-th root of unity if and only if k divides m (in \mathbb{Z}).
- (c) Suppose further that p is odd.
 - (i) Show that a primitive 8-th root of unity ζ exists in some field extension of \mathbb{F}_p .
 - (ii) Let $\alpha = \zeta + \zeta^{-1}$. Show that
 - (A) $\alpha^2 = 2$;
 - (B) $\alpha^p = \alpha$ if and only if $p \equiv \pm 1 \pmod{8}$. (You may NOT assume any result pertaining to quadratic residues without proof.)
 - (iii) Deduce, or otherwise, that there exists $\beta \in \mathbb{F}_p$ such that $\beta^2 = 2$ if and only if $p \equiv \pm 1 \pmod{8}$.

PAGE 3 MA5203

Question 3 [30 marks]

Let A be a commutative ring with 1, and let A[[x]] be the ring of formal power series in x with coefficients in A, i.e.

$$A[[x]] = \{ \sum_{i=0}^{\infty} a_i x^i \mid a_0, a_1, \dots \in A \}.$$

Let $f(x) = \sum_{i=0}^{\infty} a_i x^i \in A[[x]].$

- (a) Show that f(x) is a unit in A[[x]] if and only if a_0 is a unit of A.
- (b) Show that $f(x) \in J(A[[x]])$ if and only if $a_0 \in J(A)$. (For a commutative ring R with 1, J(R) denotes the Jacobson radical of R.)
- (c) Show that if f(x) is nilpotent, then a_i is nilpotent for all $i \in \mathbb{Z}_{\geq 0}$.
- (d) Show that if A is Noetherian, and a_i is nilpotent for all $i \in \mathbb{Z}_{\geq 0}$, then f(x) is nilpotent.
- (e) Show that if A is Noetherian, then A[[x]] is Noetherian. (You may assume Hilbert Basis Theorem without proof if necessary.)