NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

Qualification Examination

Analysis

January, 2010 — Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper comprises **THREE (3)** printed pages.
- 2. This paper consists of **EIGHT (8)** questions. Answer **ALL** of them. Marks for each question are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Answer all the questions in this paper

Question 1 [20 marks]

Suppose f is a non-negative function on \mathbb{R}^n such that $\int_{\mathbb{R}^n} f = 1$. If 0 is real number, show that

$$\int_E f^p \le |E|^{1-p}$$

for every measurable set E. Similarly show that if E is a measurable set with $0 < |E| < \infty$, then

$$\int_E \log f \le -|E| \log |E|.$$

Question 2 [15 marks]

Let Δ be the unit disk of the complex plane. Let f be analytic and bounded by M on Δ . If a_1, a_2, \dots, a_n are among the zeros of f, and define

$$B(z) = \prod_{k=1}^{n} \frac{z - a_k}{1 - \bar{a_k}z}.$$

(1) Show that B is analytic on Δ and |B(z)| = 1 for |z| = 1;

(2) Show that $|f(z)| \leq M|B(z)|$ for each $z \in \Delta$.

Question 3 [15 marks]

Show that the polynomial $P(z) = 3z^{15} + 4z^8 + 6z^5 + 19z^4 + 3z + 1$ has (i) 4 zeros for |z| < 1 and (ii) 11 zeros for 1 < |z| < 2.

Question 4 [10 marks]

Let $\{f_k\}$ be a sequence of non-negative measurable functions on a measurable set E with $|E| < \infty$. Is it true that f_k converges to 0 on E in measure as $k \to \infty$ if and only if

$$\lim_{k \to \infty} \int_E \frac{f_k}{1 + f_k} = 0?$$

If it is true, prove it. If it is not true, provide a counterexample.

. . . – 3 –

Question 5 [10 marks]

Suppose f(u) is a continuous function on [-1, 1]. Show that

$$\int \int_{x^2 + y^2 + z^2 = 1} f(z) ds = 2\pi \int_{-1}^{1} f(z) dz$$

Question 6 [10 marks] Suppose that $\sum_{n=1}^{\infty} u_n$ converges. Show that

$$\lim_{n \to \infty} \frac{u_1 + 2u_2 + 3u_3 + \dots + nu_n}{n} = 0.$$

Question 7 [10 marks]

Let $\phi(t)$ be a positive continuous function on $[0, \infty)$ and f(t, x) be a continuous function of two variables such that $|f(t, x)| \leq \phi(t)|x|$. Suppose $\int_0^\infty \phi(t) < \infty$. Show that if the function y satisfies the inequality

$$|y(t)| \le \int_0^t |f(s, y(s))| ds,$$

for all $t \in [0, \infty)$, then $y(t) \equiv 0$.

Question 8 [10 marks]

Consider the functions

$$f(x) = (\int_0^x e^{-u^2} du)^2$$

and

$$g(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$$

Show that $f(x) + g(x) = \frac{\pi}{4}$ for all $x \ge 0$ and hence $\lim_{x \to \infty} \int_0^x e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

END OF PAPER