NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

Qualification Examination

Analysis
January, 2010 - Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper comprises THREE (3) printed pages.
2. This paper consists of EIGHT (8) questions. Answer ALL of them. Marks for each question are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Answer all the questions in this paper

Question 1 [20 marks]
Suppose f is a non-negative function on R^{n} such that $\int_{R^{n}} f=1$. If $0<p<1$ is real number, show that

$$
\int_{E} f^{p} \leq|E|^{1-p}
$$

for every measurable set E. Similarly show that if E is a measurable set with $0<|E|<\infty$, then

$$
\int_{E} \log f \leq-|E| \log |E|
$$

Question 2 [15 marks]
Let Δ be the unit disk of the complex plane. Let f be analytic and bounded by M on Δ. If $a_{1}, a_{2}, \cdots, a_{n}$ are among the zeros of f, and define

$$
B(z)=\Pi_{k=1}^{n} \frac{z-a_{k}}{1-\overline{a_{k}} z} .
$$

(1) Show that B is analytic on Δ and $|B(z)|=1$ for $|z|=1$;
(2) Show that $|f(z)| \leq M|B(z)|$ for each $z \in \Delta$.

Question 3 [15 marks]
Show that the polynomial $P(z)=3 z^{15}+4 z^{8}+6 z^{5}+19 z^{4}+3 z+1$ has (i) 4 zeros for $|z|<1$ and (ii) 11 zeros for $1<|z|<2$.

Question 4 [10 marks]
Let $\left\{f_{k}\right\}$ be a sequence of non-negative measurable functions on a measurable set E with $|E|<\infty$. Is it true that f_{k} converges to 0 on E in measure as $k \rightarrow \infty$ if and only if

$$
\lim _{k \rightarrow \infty} \int_{E} \frac{f_{k}}{1+f_{k}}=0 ?
$$

If it is true, prove it. If it is not true, provide a counterexample.

Question 5 [10 marks]
Suppose $f(u)$ is a continuous function on $[-1,1]$. Show that

$$
\iint_{x^{2}+y^{2}+z^{2}=1} f(z) d s=2 \pi \int_{-1}^{1} f(z) d z .
$$

Question 6 [10 marks]
Suppose that $\sum_{n=1}^{\infty} u_{n}$ converges. Show that

$$
\lim _{n \rightarrow \infty} \frac{u_{1}+2 u_{2}+3 u_{3}+\cdots+n u_{n}}{n}=0 .
$$

Question 7 [10 marks]
Let $\phi(t)$ be a positive continuous function on $[0, \infty)$ and $f(t, x)$ be a continuous function of two variables such that $|f(t, x)| \leq \phi(t)|x|$. Suppose $\int_{0}^{\infty} \phi(t)<\infty$. Show that if the function y satisfies the inequality

$$
|y(t)| \leq \int_{0}^{t}|f(s, y(s))| d s
$$

for all $t \in[0, \infty)$, then $y(t) \equiv 0$.

Question 8 [10 marks]
Consider the functions

$$
f(x)=\left(\int_{0}^{x} e^{-u^{2}} d u\right)^{2}
$$

and

$$
g(x)=\int_{0}^{1} \frac{e^{-x^{2}\left(t^{2}+1\right)}}{t^{2}+1} d t
$$

Show that $f(x)+g(x)=\frac{\pi}{4}$ for all $x \geq 0$ and hence $\lim _{x \rightarrow \infty} \int_{0}^{x} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}$.

