NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

Qualification Examination

Analysis

August, 2009 - Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper comprises **THREE (3)** printed pages.
- 2. This paper consists of **TEN (10)** questions. Answer **ALL** of them.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Answer all the questions in this paper

Question 1 [10 marks]

Suppose f and g are both measurable function on the interval (0, 1) such that for all $t \in \mathbb{R}^1$,

$$|\{x \in (0,1) : f(x) \ge t\}| = |\{x \in (0,1) : g(x) \ge t\}|.$$

Assume f and g both are monotone decreasing and continuous from left. Can you conclude that f(x) = g(x) for all $x \in (0, 1)$? Give the reason to support your answer.

Question 2 [10 marks]

Compute the volume of the region bounded by $(a_{11}x + a_{12}y + a_{13}z)^2 + (a_{21}x + a_{22}y + a_{23}z)^2 + (a_{31}x + a_{32}y + a_{33}z)^2 = 1$ where the determinant of the 3×3 matrix (a_{ij}) is NOT equal to zero.

Question 3 [10 marks]

Let D be a measurable set in \mathbb{R}^n with finite measure. Suppose $\phi(x,t)$ is a real valued continuous function on $D \times \mathbb{R}^1$ such that for almost every $x \in D$, $\phi(x,t)$ is a continuous function of t and for every real number t, $\phi(x,t)$ is measurable function of x. If $\{f_n\}$ is a sequence of measurable functions on D that converges to f in measure, show that $\{\phi(x, f_n(x))\}$ converges to $\phi(x, f(x))$ in measure.

Question 4 [10 marks]

Find the function $I(y) = \int_0^\infty [e^{-ax^2} \cos(yx)] dx$ if a > 0 is a constant. Justify your answer.

Question 5 [10 marks]

Compute the integral $\int_0^{\pi} \frac{x \sin x}{1+a^2-2a \cos x} dx$ where a > 0 is a constant. (Hint: Apply Residue theorem to the function $f(z) = z/(a - e^{-iz})$ in a suitable region).

Question 6 [10 marks]

Suppose f(z) is a holomorphic function on the complex plane C. If f locally keeps the area invariant, what will the function f be? (Hint: f locally keeps the area invariant if for each point z_0 in C and any neighborhood Ω of z_0 , the area of $f(\Omega)$ is equal to the area of Ω .)

Question 7 [10 marks]

Is there an analytic function f on Δ (unit disk in the complex plane with center 0) such that |f(z)| < 1 for |z| < 1 with $f(0) = \frac{1}{2}$ and $f'(0) = \frac{3}{4}$? If so, find such an f. Is it unique?

Question 8 [10 marks]

Let m < n be two positive integers and Ω and G be open subsets in \mathbb{R}^n and \mathbb{R}^m respectively. Does there exist a map $f : \Omega \to G$ such that f and the inverse of f are both \mathbb{C}^1 ? Justify your answer.

Question 9 [10 marks]

Is there a square integrable function f on $[0, \pi]$ such that both inequalities

$$\int_0^{\pi} (f(x) - \sin x)^2 dx \le \frac{4}{9}$$

and

$$\int_{0}^{\pi} (f(x) - \cos x)^2 dx \le \frac{1}{9}$$

hold? Justify your answer.

Question 10 [10 marks]

Let α_k for $k = 1, 2, \dots, n$ be *n* real numbers such that $0 < \alpha_k < \pi$ for any *k*. Define $\alpha = \frac{1}{n} \sum_{k=1}^{n} \alpha_k$. Show that

$$(\prod_{k=1}^{n} \frac{\sin \alpha_k}{\alpha_k})^{1/n} \le \frac{\sin \alpha}{\alpha}$$

END OF PAPER