NATIONAL UNIVERSITY OF SINGAPORE

 FACULTY OF SCIENCE Qualification Examination
Analysis

August, 2009 - Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper comprises THREE (3) printed pages.
2. This paper consists of TEN (10) questions. Answer ALL of them.
3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Answer all the questions in this paper

Question 1 [10 marks]
Suppose f and g are both measurable function on the interval $(0,1)$ such that for all $t \in R^{1}$,

$$
|\{x \in(0,1): f(x) \geq t\}|=|\{x \in(0,1): g(x) \geq t\}| .
$$

Assume f and g both are monotone decreasing and continuous from left. Can you conclude that $f(x)=g(x)$ for all $x \in(0,1)$? Give the reason to support your answer.

Question 2 [10 marks]
Compute the volume of the region bounded by $\left(a_{11} x+a_{12} y+a_{13} z\right)^{2}+\left(a_{21} x+a_{22} y+\right.$ $\left.a_{23} z\right)^{2}+\left(a_{31} x+a_{32} y+a_{33} z\right)^{2}=1$ where the determinant of the 3×3 matrix $\left(a_{i j}\right)$ is NOT equal to zero.

Question 3 [10 marks]
Let D be a measurable set in R^{n} with finite measure. Suppose $\phi(x, t)$ is a real valued continuous function on $D \times R^{1}$ such that for almost every $x \in D, \phi(x, t)$ is a continuous function of t and for every real number $t, \phi(x, t)$ is measurable function of x. If $\left\{f_{n}\right\}$ is a sequence of measurable functions on D that converges to f in measure, show that $\left\{\phi\left(x, f_{n}(x)\right)\right\}$ converges to $\phi(x, f(x))$ in measure.

Question 4 [10 marks]
Find the function $I(y)=\int_{0}^{\infty}\left[e^{-a x^{2}} \cos (y x)\right] d x$ if $a>0$ is a constant. Justify your answer.

Question 5 [10 marks]
Compute the integral $\int_{0}^{\pi} \frac{x \sin x}{1+a^{2}-2 a \cos x} d x$ where $a>0$ is a constant. (Hint: Apply Residue theorem to the function $f(z)=z /\left(a-e^{-i z}\right)$ in a suitable region $)$.

Question 6 [10 marks]
Suppose $f(z)$ is a holomorphic function on the complex plane C. If f locally keeps the area invariant, what will the function f be? (Hint: f locally keeps the area invariant if for each point z_{0} in C and any neighborhood Ω of z_{0}, the area of $f(\Omega)$ is equal to the area of Ω.)

Question 7 [10 marks]
Is there an analytic function f on Δ (unit disk in the complex plane with center 0) such that $|f(z)|<1$ for $|z|<1$ with $f(0)=\frac{1}{2}$ and $f^{\prime}(0)=\frac{3}{4}$? If so, find such an f. Is it unique?

Question 8 [10 marks]
Let $m<n$ be two positive integers and Ω and G be open subsets in R^{n} and R^{m} respectively. Does there exist a map $f: \Omega \rightarrow G$ such that f and the inverse of f are both C^{1} ? Justify your answer.

Question 9 [10 marks]
Is there a square integrable function f on $[0, \pi]$ such that both inequalities

$$
\int_{0}^{\pi}(f(x)-\sin x)^{2} d x \leq \frac{4}{9}
$$

and

$$
\int_{0}^{\pi}(f(x)-\cos x)^{2} d x \leq \frac{1}{9}
$$

hold? Justify your answer.

Question 10 [10 marks]
Let α_{k} for $k=1,2, \cdots, n$ be n real numbers such that $0<\alpha_{k}<\pi$ for any k. Define $\alpha=\frac{1}{n} \sum_{k=1}^{n} \alpha_{k}$. Show that

$$
\left(\prod_{k=1}^{n} \frac{\sin \alpha_{k}}{\alpha_{k}}\right)^{1 / n} \leq \frac{\sin \alpha}{\alpha} .
$$

