NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2008-2009

MA5205 Graduate Analysis I

November 27, 2008 — Time allowed : $2\frac{1}{2}$ hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper comprises **Three (3)** printed pages.
- 2. This paper consists of **FIVE (5)** questions. Answer **ALL** of them.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA5205

Answer all the questions in this paper

Question 1 [25 marks]

- (i) Show that if f is continuous over (a, b] except at x = a and if f is Lebesgue integrable over [a, b], then f is improper integrable, i.e, the limit $\lim_{t\to a^+} \int_t^b f(x)dx$ exists and is finite.
- (ii) Show that $\frac{1}{x}$ is not Lebesgue integrable over [0,1].
- (iii) Show that if f(x) is Lebesgue integrable over [0, a], then for any k > 0, f(kx) is integrable over [0, a/k].
- (iv) Show that $f(x) = \frac{1}{x}\cos(\frac{2}{x})$ if $x \in (0,1]$ and f(0) = 0 is not Lebesgue integrable, but its improper integral exists. (**Hint:** If this is Lebesgue integrable, by (iii), $g(x) := \frac{1}{x}\cos(\frac{1}{x})$ would also be integrable, so is $\frac{1}{x}\cos^2(\frac{1}{x})$ by observation that it is less than |g(x)|. Try to compare with (ii).)

Question 2 [20 marks]

Define $f(x) = x^2$ if x is a rational number in the interval [0,1] and $f(x) = x^3$ if x is an irrational number in the same interval.

- (i) Show that for all t > 0, $\ln(1 + e^t) < t + \ln 2$.
- (ii) Use (i) or otherwise to show that

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 \ln(1 + e^{nf(x)}) dx = \frac{1}{4}.$$

Question 3 [20 marks]

Show that if $f \in L^p(\mathbb{R}^n)$ and $K \in L^{p'}(\mathbb{R}^n)$ with $1 \leq p \leq \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, then the convolution f * K is bounded and continuous in \mathbb{R}^n .

PAGE 3 MA5205

Question 4 [15 marks]

Suppose $f_k \to f$ in $L^p(E)$, $1 \le p < \infty$, for a measurable set E and $g_k \to g$ point-wise in E, $||g_k||_{L^\infty} \le M$ for all k. Show that $f_k g_k \to f g$ in $L^p(E)$.

Question 5 [20 marks]

Show that if $f \in L^1(\mathbb{R}^n)$, then the maximum function $f^* \in L^q(E)$ for any 0 < q < 1 and any measurable set E with finite measure. (**Hint:** Let $\omega(\alpha) = |\{x \in \mathbb{R}^n : f^*(x) > \alpha\} \cap E|$. Then use the identity $\int_E (f^*)^q = q \int_0^\infty \alpha^{q-1} \omega(\alpha) d\alpha$.)

END OF PAPER